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1 Maxwell-Boltzmann distribution

Derivation. The probability Pi that a particle occupies a state with energy Ei is propor-
tional to the Boltzmann factor:

Pi ∝ exp

(
− Ei
kT

)
Along one dimension, we have E = mv2

x/2, so the probability of any velocity vx is

f(vx) =

√
m

2πkT
exp

(
−mv

2
x

2kT

)
where the distribution is normalized so that

∫∞
−∞ f(vx)dx = 1.

Since the component velocities are independent,

f(vx, vy, vz) = f(vx)f(vy)f(vz) =
( m

2πkT

)3/2

exp

(
−
m(v2

x + v2
y + v2

z)

2kT

)
Finally, we integrate over the sphere v2 = v2

x + v2
y + v2

z

f(v) =
( m

2πkT

)3/2

4πv2 exp

(
−mv

2

2kT

)
RMS speed. vrms =

√
v2. For conciseness, let α = m/2kT .

vrms =

√∫ ∞
0

f(v) v2 dv =

√(α
π

)3/2

4πv2e−αv2v2 dv =

√
4√
π
α3/2

∫ ∞
0

v4e−αv2 dv

Now change to variable x = αv2 so that v = x
a

and dv = 1
2αv

dx.

vrms =

√
4√
π
α3/2

∫ ∞
0

v4e−x
1

2αv
dx =

√
2

α
√
π

∫ ∞
0

x3/2e−x dx

The Gamma function Γ(z) =

∫ ∞
0

xz−1e−xdx satisfies Γ

(
1

2

)
=
√
π and Γ(z + 1) = z Γ(z),

so

vrms =

√
2

α
√
π

Γ

(
5

2

)
=

√
2

α
√
π

(√
π · 1

2
· 3

2

)
=

√
3

2α
=

√
3kT

m

Most probable speed. f ′(vp) = 0⇒ vp =
√

2kT
m

.

Average speed. v =
∫∞

0
vf(v) dv =

√
8kT
πm

.
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2 Thermodynamics

Zeroth law. If two systems are in thermal equilibrium with a third system, they are in
thermal equilibrium with each other, i.e. temperature T is transitive.

Thermal expansion. The length of a metal bar or the height of a column of mercury
increases at higher T according to d`

dT
= α`⇒ ` = `0 e

α(T−T0). The Taylor expansion

f(x) = f(x0) +
f ′(x0)

1
(x− x0) + · · ·

gives a linear approximation ` ≈ `0 + α`0∆T or

∆` ≈ α`0∆T

Similarly, V ≈ (1 + α∆T )3 V0 ≈ (1 + 3α∆T )V0, so

∆V ≈ βV0∆T, where β = 3α

This defines the empirical temperature scale used in thermometers.

Ideal gas law. Consider a side of a cube containing an ideal gas, which has perfectly elastic

collisions. F =
dp

dt
=

2mvx
2L/vx

=
mv2

x

L
and P =

F

A
=
mv2

x

L3
=
mv2

3V
, so

PV =
2

3
KE = NkT

This shows that temperature is an absolute scale which measures internal energy.

Equipartition theorem. We have assumed that KE is only due to translational motion in
three dimensions. But diatomic molecules have two more degrees of rotational KE = 1

2
Iω2.

Since these terms are also quadratic, we may generalize our results to d degrees of freedom:

KE =
d

2
NkT

First law: energy is conserved. Energy may be transferred on two levels: microscopic, as
heat transferred into the gas, or macroscopic, as work done by the gas. Thus,

∆U = Q−W

Note that W =
∫
F dx =

∫
PA dx =

∫
P dV is the area under a PV diagram.

Second law. Total entropy always increases: ∆S =

∫
d̄Q

T
≥ 0

Clausius statement: no process is possible whose sole effect is to transfer heat from a cold
to a hot reservoir , since otherwise dS = d̄Q

QH
+ −d̄Q

QL
< 0.

Kelvin-Planck statement: no process is possible to convert heat entirely into work, since
otherwise the work could be used to heat a warmer reservoir.

Third law: S = 0 for a perfect crystal at T = 0, i.e. entropy is an absolute quantity.
However, ∆S also goes to 0, so it is impossible to reach this state in a finite number of steps.
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3 Thermal processes

Isothermal: ∆T = 0⇒ ∆U = 0. Q = W =
∫ V
V0

nRT
V

dV = nRT ln V
V0

.
This shows that Q = nC∆T is not valid for gases with ∆V � 0. Instead, gases have a
specific heat at constant volume CV and a specific heat at constant pressure CP . Isothermal
processes may be computed as a combination of isovolumetric and isobaric processes.

Isovolumetric: ∆V = 0⇒ W = 0. Q = ∆U = d
2
nR∆T , so CV = d

2
R.

Note that ∆U = nCV ∆T always holds for any process.

Isobaric: ∆P = 0. Q = ∆U +W = d
2
nR∆T + nR∆T , so CP =

(
d
2

+ 1
)
R.

CP > CV since under isobaric conditions, some of the heat is used to do work.

Adiabatic: Q = 0⇒ ∆S = 0. We have the differential ideal gas law P dV +V dP = nR dT
and nCV dT = d̄U = −d̄W = −PdV ⇒ nCV dT + P dV = 0, so dP

P
+ CV +R

CV

dV
V

= 0. Thus,

PV γ is constant, where γ =
CP
CV

=
d+ 2

d

Adiabatic curves are steeper than isothermal curves on the PV diagram since T changes.

4 Heat engines

Efficiency η =
W

Qin

=
QH −QL

QH

= 1− QH

QL

< 1.

Carnot’s theorem. Reversible processes have are quasistatic (carried out infinitely slowly
as a series of equilibrium states) and frictionless. All reversible engines between constant
temperatures have the same efficiency (Carnot’s theorem), while irreversible engines have a
lower efficiency.

Carnot cycle. Consists of isothermal expansion ab, adiabatic expansion bc, isothermal
compression cd, and adiabatic compression da. Since d̄Q = T dS,

η = 1− QH

QL

= 1− TL∆S

TH∆S
= 1− TL

TH
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