Thermodynamics

Allen Zhu

1 Maxwell-Boltzmann distribution

Derivation. The probability P_i that a particle occupies a state with energy E_i is proportional to the Boltzmann factor:

$$P_i \propto \exp\left(-\frac{E_i}{kT}\right)$$

Along one dimension, we have $E = mv_x^2/2$, so the probability of any velocity v_x is

$$f(v_x) = \sqrt{\frac{m}{2\pi kT}} \exp\left(-\frac{mv_x^2}{2kT}\right)$$

where the distribution is normalized so that $\int_{-\infty}^{\infty} f(v_x) dx = 1$. Since the component velocities are independent,

$$f(v_x, v_y, v_z) = f(v_x)f(v_y)f(v_z) = \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left(-\frac{m(v_x^2 + v_y^2 + v_z^2)}{2kT}\right)$$

Finally, we integrate over the sphere $v^2 = v_x^2 + v_y^2 + v_z^2$

$$f(v) = \left(\frac{m}{2\pi kT}\right)^{3/2} 4\pi v^2 \exp\left(-\frac{mv^2}{2kT}\right)$$

RMS speed. $v_{\rm rms} = \sqrt{\overline{v^2}}$. For conciseness, let $\alpha = m/2kT$.

$$v_{\rm rms} = \sqrt{\int_0^\infty f(v) \, v^2 \, \mathrm{d}v} = \sqrt{\left(\frac{\alpha}{\pi}\right)^{3/2} 4\pi v^2 e^{-\alpha v^2} v^2 \, \mathrm{d}v} = \sqrt{\frac{4}{\sqrt{\pi}} \alpha^{3/2} \int_0^\infty v^4 e^{-\alpha v^2} \, \mathrm{d}v}$$

Now change to variable $x = \alpha v^2$ so that $v = \frac{x}{a}$ and $dv = \frac{1}{2\alpha v} dx$.

$$v_{\rm rms} = \sqrt{\frac{4}{\sqrt{\pi}}} \alpha^{3/2} \int_0^\infty v^4 e^{-x} \frac{1}{2\alpha v} \,\mathrm{d}x = \sqrt{\frac{2}{\alpha\sqrt{\pi}}} \int_0^\infty x^{3/2} e^{-x} \,\mathrm{d}x$$

The Gamma function $\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$ satisfies $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ and $\Gamma(z+1) = z \Gamma(z)$, so

$$v_{\rm rms} = \sqrt{\frac{2}{\alpha\sqrt{\pi}}}\Gamma\left(\frac{5}{2}\right) = \sqrt{\frac{2}{\alpha\sqrt{\pi}}}\left(\sqrt{\pi}\cdot\frac{1}{2}\cdot\frac{3}{2}\right) = \sqrt{\frac{3}{2\alpha}} = \sqrt{\frac{3kT}{m}}$$

Most probable speed. $f'(v_p) = 0 \Rightarrow v_p = \sqrt{\frac{2kT}{m}}$. Average speed. $\overline{v} = \int_0^\infty v f(v) \, \mathrm{d}v = \sqrt{\frac{8kT}{\pi m}}$.

2 Thermodynamics

Zeroth law. If two systems are in thermal equilibrium with a third system, they are in thermal equilibrium with each other, i.e. temperature T is transitive.

Thermal expansion. The length of a metal bar or the height of a column of mercury increases at higher T according to $\frac{d\ell}{dT} = \alpha \ell \Rightarrow \ell = \ell_0 e^{\alpha(T-T_0)}$. The Taylor expansion

$$f(x) = f(x_0) + \frac{f'(x_0)}{1}(x - x_0) + \cdots$$

gives a linear approximation $\ell \approx \ell_0 + \alpha \ell_0 \Delta T$ or

 $\Delta \ell \approx \alpha \ell_0 \Delta T$

Similarly, $V \approx (1 + \alpha \Delta T)^3 V_0 \approx (1 + 3\alpha \Delta T) V_0$, so

$$\Delta V \approx \beta V_0 \Delta T$$
, where $\beta = 3\alpha$

This defines the empirical temperature scale used in thermometers.

Ideal gas law. Consider a side of a cube containing an ideal gas, which has perfectly elastic collisions. $F = \frac{\mathrm{d}p}{\mathrm{d}t} = \frac{2m\overline{v_x}}{2L/\overline{v_x}} = \frac{m\overline{v_x^2}}{L}$ and $P = \frac{F}{A} = \frac{m\overline{v_x^2}}{L^3} = \frac{m\overline{v^2}}{3V}$, so $PV = \frac{2}{3}KE = NkT$

This shows that temperature is an absolute scale which measures internal energy.

Equipartition theorem. We have assumed that KE is only due to translational motion in three dimensions. But diatomic molecules have two more degrees of rotational $\text{KE} = \frac{1}{2}I\omega^2$. Since these terms are also quadratic, we may generalize our results to d degrees of freedom:

$$KE = \frac{d}{2}NkT$$

First law: energy is conserved. Energy may be transferred on two levels: microscopic, as heat transferred into the gas, or macroscopic, as work done by the gas. Thus,

$$\Delta U = Q - W$$

Note that $W = \int F \, dx = \int P A \, dx = \int P \, dV$ is the area under a PV diagram.

Second law. Total entropy always increases: $\Delta S = \int \frac{dQ}{T} \ge 0$ Clausius statement: no process is possible whose sole effect is to transfer heat from a cold to a hot reservoir, since otherwise $dS = \frac{dQ}{Q_H} + \frac{-dQ}{Q_L} < 0$. Kelvin-Planck statement: no process is possible to convert heat entirely into work, since

Kelvin-Planck statement: no process is possible to convert heat entirely into work, since otherwise the work could be used to heat a warmer reservoir.

Third law: S = 0 for a perfect crystal at T = 0, i.e. entropy is an absolute quantity. However, ΔS also goes to 0, so it is impossible to reach this state in a finite number of steps.

3 Thermal processes

Isothermal: $\Delta T = 0 \Rightarrow \Delta U = 0$. $Q = W = \int_{V_0}^{V} \frac{nRT}{V} dV = nRT \ln \frac{V}{V_0}$. This shows that $Q = nC\Delta T$ is not valid for gases with $\Delta V \gg 0$. Instead, gases have a specific heat at constant volume C_V and a specific heat at constant pressure C_P . Isothermal processes may be computed as a combination of isovolumetric and isobaric processes.

Isovolumetric: $\Delta V = 0 \Rightarrow W = 0$. $Q = \Delta U = \frac{d}{2}nR\Delta T$, so $C_V = \frac{d}{2}R$. Note that $\Delta U = nC_V\Delta T$ always holds for any process.

Isobaric: $\Delta P = 0$. $Q = \Delta U + W = \frac{d}{2}nR\Delta T + nR\Delta T$, so $C_P = (\frac{d}{2} + 1)R$. $C_P > C_V$ since under isobaric conditions, some of the heat is used to do work.

Adiabatic: $Q = 0 \Rightarrow \Delta S = 0$. We have the differential ideal gas law $P \, dV + V \, dP = nR \, dT$ and $nC_V \, dT = dU = -dW = -PdV \Rightarrow nC_V \, dT + P \, dV = 0$, so $\frac{dP}{P} + \frac{C_V + R}{C_V} \frac{dV}{V} = 0$. Thus,

$$PV^{\gamma}$$
 is constant, where $\gamma = \frac{C_P}{C_V} = \frac{d+2}{d}$

Adiabatic curves are steeper than isothermal curves on the PV diagram since T changes.

4 Heat engines

Efficiency
$$\eta = \frac{W}{Q_{\text{in}}} = \frac{Q_H - Q_L}{Q_H} = 1 - \frac{Q_H}{Q_L} < 1$$

Carnot's theorem. Reversible processes have are quasistatic (carried out infinitely slowly as a series of equilibrium states) and frictionless. All reversible engines between constant temperatures have the same efficiency (Carnot's theorem), while irreversible engines have a lower efficiency.

Carnot cycle. Consists of isothermal expansion ab, adiabatic expansion bc, isothermal compression cd, and adiabatic compression da. Since dQ = T dS,

$$\eta = 1 - \frac{Q_H}{Q_L} = 1 - \frac{T_L \Delta S}{T_H \Delta S} = 1 - \frac{T_L}{T_H}$$