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1. Linear Equations

Definition 1. The linear combination of vectors vi with weights ci is
∑
civi.

Span{vi} is the set of all linear combinations of vi.

Definition 2. A linear equation has the form
∑
aixi = b. A system of linear equations

is a collection of one or more linear equations involving the same variables xi, and can be
represented as Ax = b. A system is consistent iff it has at least one solution x. The set of
all possible solutions is called the solution set, and two linear systems are equivalent if they
share the same solution set.
Ax is a lincomb of the columns of A. The span of the columns is the set of all consistent b.

Definition 3. The Gaussian elimination algorithm solves systems of linear equations sys-
tematically by applying a series of elementary row operations to a matrix:

(1) Interchange: swap two rows
(2) Scaling : multiply all entries of a row by a nonzero constant
(3) Replacement : add a multiple of one row to another

Two matrices are row equivalent if there a series of EROs can transform one into the other.

Remark 1. Row equivalent augmented matrices represent equivalent systems.

Definition 4. The forward phase of Gaussian elimination simplifies a matrix to row echelon
form, which satisfies the following conditions:

(1) Each pivot occurs to the right of the one above it
(2) All entries below a pivot are zeros
(3) All zero rows are below any nonzero rows

The backwards phase produces the unique reduced row echelon form, which also satisfies:

(1) Each leading entry is 1
(2) Each leading 1 is the only nonzero entry in its column

The pivots for an echelon matrix are the leading entries, the leftmost nonzero entries of the
nonzero rows. Basic variables correspond to pivot columns, while the rest are free variables.

Definition 5. A homogeneous system is of the form Ax = 0.
Vectors vi are linearly independent iff V c = 0 has only the trivial solution.

Theorem 1. Ax = 0 has only the trivial solution iff there is a pivot in every column or iff
the columns of a matrix A are linearly independent.

Theorem 2. The solution set of Ax = b is xp + xh, where xp is a solution and xh is a
solution of Ax = 0. This is an affine space, a plane translated from the origin.

Proof. A(xp + xh) = Axp +Axh = b + 0 = b. Conversely, if there are two distinct solutions
Ax1 = Ax2 = b, then A(x1 − x2) = 0. �
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Remark 2. Ax = b has a unique solution for each b iff there is a pivot in every column,
and has a solution for all b iff A has a pivot in every row.
A linear system has:

• A unique solution if there is a pivot in every column (no free variables)
• No solutions if the rightmost column of its augmented matrix is a pivot column
• Infinitely many solutions otherwise

2. Vector Spaces

Definition 6. A vector space is an abelian group of vectors (over a field of scalars) that
contains 0 and is closed under linear combinations. A subspace is a subset that is also a
vector space, i.e. a nonempty closed subset. The basis of a space is a linearly independent
spanning subset, such as the standard basis ei of Rn.

Theorem 3 (Linear Dependence). A list of vectors is linearly dependent iff one of the
vectors is a linear combination of the ones before it, and that vector can be removed from
the linearly dependent set without affecting the span.

Proof. If a vector is a linear combination of the rest, then subtracting it from both sides
produces a linear dependence. If we have a linear dependence, either the first vector is zero
and it is the sum of the other vectors, or one can write a linear combination by subtracting
the other vectors and dividing by its coefficient. Any vector in the span is still expressible
as a linear combination of the other vectors. �

Theorem 4. Any set containing 0 is linearly dependent.

Proof. A nontrivial solution is 10 + 0v1 + · · ·+ 0vn = 0. �

Theorem 5. In a vector space, the length of any linearly independent set is less than or
equal to the length of any spanning set.

Proof. Suppose ui is linearly independent and vi spans V . We add a vector u1 to the spanning
set to form (u1, v1, . . . , vn), which must be linearly dependent. Then we may remove one of
the v’s so that the list still spans V . We are able to remove one v each time we repeat this
process since the expanded set is dependent and vi are independent. Thus there must at
least as many spanning elements as there are linearly independent elements. �

Corollary 1. A set which contains more vectors than the entries in each vector is linearly
dependent, since it is longer than the basis. Thus, the columns of a matrix are linearly
dependent if there are more columns than rows.

Theorem 6 (Dimension). Any spanning list in a vector space can be reduced to a basis,
and any linearly independent list can be extended to a basis, so a basis is a maximal LI set
or a minimal spanning set. Each basis of a subspace has the same size, called the dimension
of the subspace. The zero subspace has an empty basis and dimension zero.

Proof. For each vector in the list: if the vector is 0 or if it is in the span of those before
it, remove it. The list is still a span and is now linearly independent. The other proof is
analogous. Consider two bases B1 and B2 of a space. Since B1 is linearly independent and
B2 is a spanning set, |B1| ≤ |B2|. Vice versa, |B2| ≤ |B1|, so |B1| = |B2|. �

Theorem 7. If U is a subspace of V , then dimU ≤ dimV .
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Proof. Any basis of U is a linearly independent set of vectors in V and can be extended to
a basis of V . �

Theorem 8. Every spanning set and every linearly independent set in V with dimV elements
is a basis of V .

Proof. Suppose vi spans V . Then it can be reduced to a basis of V . But that basis must have
dimV elements, so the reduction does not change the set, so vi originally spanned V . �

3. Matrices

Definition 7. The four fundamental subspaces of a matrix A are:

• The column space ColA ∈ Rm is the span of the columns, containing all b s.t. Ax = b
is consistent.
• The nullspace NullA ∈ Rn is the space of solutions of the homogeneous system. Each

element describes a relation on the columns of A.
• The row space RowA ∈ Rn is the span of the rows, or ColA>.
• The left nullspace LNullA ∈ Rm is the nullspace of A>. The row vectors following

zero rows in rref([A|I]) form the basis of LNullA.

Remark 3. EROs preserve the row space and the order of columns. EROs also preserve
the null space since (rrefA)x = 0 is equivalent to Ax = 0, so matrices with the same null
space have the same row space and vice versa.

Theorem 9. The nonzero rows of rrefA form a basis for the row space.

Theorem 10. They span the row space, and they are independent since each pivot is the
only nonzero entry in its column.

Theorem 11. Each nonpivot column of a matrix is a linear combination of pivot columns
to its left.

Proof. This is relation among columns, and it holds on rrefA. �

Theorem 12. The pivot columns of a matrix form a basis for the column space.

Proof. The pivot columns span the column space since the nonpivot columns are lincombs of
them. Further, the pivot columns in rrefA are independent since they are distinct standard
vectors, so the original columns are also. �

Corollary 2. dim Row A = # pivots = dim Col A

Theorem 13. Row(A) is the orthogonal complement of Null(A), and Col(A) is the orthog-
onal complement of LNull(A).

Theorem 14 (Rank-Nullity). The rank of a m×n matrix A is the dimension of its column
space, and the nullity of a matrix is the dimension of its nullspace. Rank A+ Nullity A = n.

Proof. Let (u1, . . . ,up) be the basis of Null A. We can add vectors (v1, . . . ,vq) to form a
basis of Rn. We aim to show that vi are the basis of the column space. For w ∈ Rn, we have

w = a1u1 + · · ·+ apup + b1v1 + · · ·+ bqvq

= b1v1 + · · ·+ bqvq
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Thus vi span the column space. Next, consider weights ci s.t.

c1v1 + · · ·+ cnvn = 0

Since 0 ∈ Null A we can write

c1v1 + · · ·+ cnvn = d1u1 + · · ·+ dpup

But vi and ui are linearly independent so ci = 0 and vi are linearly independent. Thus vi
are a basis of the column space, as desired. �

Definition 8. A linear transformation is a map from domain Rm to codomain Rn which is
additive and homogeneous, so T (c1u + c2v) = c1T (u) + c2T (v). The kernel is the space of
all vectors that map to 0. It is one-to-one or injective if there is a unique input for each
output. It is onto or surjective if its range equals the codomain.

Remark 4. Transformations include reflection, dilation, skew, rotation, and projection.

Theorem 15. The standard matrix of a linear transformation T is the matrix

A = [T (e1) T (e2) · · · T (en)]

which uniquely satisfies T (x) = Ax.

Corollary 3. The kernel and range correspond to the nullspace and rank of the matrix, so
dim kernel T + dim range T = n. T is one-to-one if the kernel/nullspace is trivial and onto
if the columns span the codomain.

Definition 9. If the domain of A matches the codomain of B, then their product AB is the
transform that applies B, then A. Equivalently,

• (AB)ij is the inner product Ai∗B∗j
• (AB)∗j = AB∗j, a lincomb of the columns of A
• (AB)i∗ = Ai∗B, a lincomb of the rows of B
• AB is the sum of outer products

∑
Ai∗B

>
∗j

Matrix multiplication satisfies the standard algebraic properties except commutativity.

Corollary 4. Since AB is a lincomb of the rows of B, rankAB ≤ rankB, and similarly
rankAB ≤ rankA.

Definition 10. The left inverse of matrix A is B s.t. BA = I, and right inverse is analogous.

Remark 5. The left inverse can be found be reducing [A|I] to [I|B], since MA = I and
B = MI = I = I−1. The left inverse exists iff there is a pivot in every row, and the right
inverse exists iff there is a pivot in every column (columns are independent).

Theorem 16 (Inverse). If a matrix A has both a left inverse B and a right inverse C, then
B = C and A is square and row equivalent to I. Then A is invertible and has inverse A−1.

Proof. B = BAC = C �

Definition 11. The transpose of a matrix is A> where (A>)ij = Aji.

Remark 6. The transpose satisfies (AB)> = B>A>. If A is invertible, then (A>)−1 =
(A−1)> since (AA−1)> = I = (A−1)>A>.

Definition 12. The coordinates of x in basis B are xB s.t. x = BxB.
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Theorem 17. B is an isomorphic map from coordinates to vectors, while B−1 translates
vectors to coordinates. The change-of-basis formula L

C←B
= C−1B converts coordinates in B

to coordinates in C, and T −1AS converts a matrix A on standard coordinates to S → T .

Proof. The new domain is S−1x and range is T −1Ax = (T −1AxS)(S−1x). �

4. Size

Theorem 18. The determinant |A| represents the volume scaling factor of a transformation
or the signed volume of the columns of its matrix.
Axiomatically, the determinant is the unique alternate multilinear function s.t. |I| = 1:

|A| =
∑
σ∈Sn

sgn(σ)
n∏
i=1

aiσ(i)

where the sum is taken over all permutations of 1 through n.

• A matrix with a zero row has a determinant of 0
• A singular matrix has a determinant of 0, since there is a linear dependence
• |A| = |A>|

Theorem 19 (Laplacian expansion by minors).

|A| =
k∑
i=1

Cij

Cofactor Cij = (−1)i+jMij and minor Mij is the determinant of A less row i and column j.

Theorem 20. Elementary matrices have the following determinants:

• 1 for row replacement
• -1 for interchange (alternate)
• k for scaling by factor k

For invertible A, |A| = |E1E2 · · ·EnI| 6= 0, so

• The determinant is multiplicative: |AB| = |A||B|
• AA−1 = I ⇒ |A||A−1| = 1
• The determinant is the product of the pivots if the matrix is invertible
• The determinant of a triangular matrix is the product of the diagonal entries

Theorem 21 (Cramer’s Rule). The solutions to Ax = b are

xi =
|Ai(b)|
|A|

where Ai(b) is the matrix which replaces the ith column of A with b.

Proof. Ax = b⇒ AIi(x) = Ai(b)⇒ |A|xi = |Ai(b)| �

Theorem 22. Applying Cramer’s rule against Ax = ei shows that

A−1 =
adj(A)

|A|
where the adjugate matrix is the transpose of the cofactor matrix.
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Definition 13. An eigenvalue λ and corresponding eigenvector v satisfies

Av = λv (v 6= 0)

Any solution must satisfy (A − λI)v = 0, so A − λI must be singular, and eigenvalues are
roots of the characteristic polynomial χ = |A−λI|. In particular the product of eigenvalues
is |A| and the sum is Tr(A).

Corollary 5. A matrix is singular iff it has a zero eigenvalue, since then A− λI = A has a
nontrivial nullspace.

Theorem 23. The eigenvalues of a triangular matrix are the diagonal entries, since A− λI
is still triangular and the determinant is just the product of the main diagonal.

Theorem 24. The algebraic multiplicity of an eigenvalue λ is its multiplicity as a root of
the charpoly. The geometric multiplicity is the dimension of the eigenspace A − λI, which
is at least 1 (since A− λI is singular) and at most the algebraic multiplicity.

Proof. Suppose the geometric multiplicity of λ is k, and let U = u1, · · · , uk be the basis for
the corresponding subspace. Extend this basis to the entire space, and let B be the change-
of-basis matrix. Then the charpoly of A is the charpoly of Q−1AQ, which is a multiple of
(t− λ)k since the first k elements are λIk. �

Proof. Let the algebraic multiplicity be k. Then rref(A−λI) is upper-triangular, so it has 0
eigenvalue at most k times, so it has at most k zero rows, so the dimension of the eigenspace
is at most k. �

Theorem 25. Eigenvectors corresponding to distinct eigenvalues are independent.

Proof. Suppose there is a dependence v = c1v1 + · · · + ckvk for nonzero ci. Multiplying
by A, λv = c1λ1v1 + · · · + ckλkvk. Multiplying by λ, λv = c1λv1 + · · · + ckλvk. Thus
0 = c1(λ− λ1)v1 + · · ·+ ck(λ− λk)vk, a contradiction. �

Definition 14. Square matrices A and B are similar if invertible P exists s.t. B = P−1AP .

• χ = |B − λI| = |P−1AP − P−1λIP | = |P−1(A − λI)P | = |A − λI|, so similar
matrices have the same charpoly, eigenvalues, determinant, and trace. Of course, the
eigenvectors are different.
• A−1 exists iff B−1 exists, and B−1 = P−1A−1P . This is equivalent to having the

same charpoly and being diagonalizable.
• If v is an eigenvector of A, then P−1v is an eigenvector of B, since B(P−1v) =

(P−1AP )P−1v = P−1Av = λ(P−1v)

Definition 15. A matrix is diagonalizable if it is similar to a diagonal matrix D, that is
A = PDP−1. Equivalently, the eigenvectors span Rn, since then the eigenbasis P and their
corresponding eigenvectors D satisfy AP = PD ⇒ A = PDP−1. A matrix is diagonaliz-
able over reals if all eigenvalues are real and the dimension of each eigenspace equals the
multiplicity of its eigenvector.

5. Orthogonality

Definition 16. The inner product or dot product u · v = u>v is symmetric, bilinear, and
positive definite, that is, u · u ≥ 0, with equality when u = 0. The length or norm of a
vector is |v| =

√
v · v. The distance between u and v is |u− v|. u and v are orthogonal iff
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u · v = 0, or equivalently if |u + v|2 = |u|2 + |v|2. The orthogonal complement of a space V
is the set of vectors orthogonal to every vector in V .

Theorem 26 (Cauchy-Schwarz). x · y ≤ |x||y|, with equality when x = ky.

Theorem 27. An orthogonal set of nonzero vectors is linearly independent.

Proof. Suppose that c1v1 + · · · + cnvn = 0. Then 0 = 0 · v1 = (c1v1 + · · · + cnvn) · v1 =
c1(v1 · v1), so c1 = 0 since v1 6= 0. Similarly, ci = 0. �

Theorem 28. The coordinates of v in an orthogonal basis U are

ci =
v · ui

ui · ui

The orthogonal projection of v onto u projuv satisfies projuv = ku and (v− projuv) ·u = 0

projuv =
v · u
u · u

u

The orthogonal projection of v onto a subspace W with orthogonal basis U is

projWv =
∑ v · ui

ui · ui

The Gram-Schmidt process orthonormalizes a basis.

Definition 17. The least squares solution x̂ to Ax = b minimizes |Ax̂− b|. It satisfies the
normal equation A>Ax̂ = A>b since |v − projWv| < |v − y| for all other y in W .

Definition 18. An orthogonal matrix is a square matrix U with orthonormal columns or
orthonomal rows, or equivalently UUT = UTU = I or UT = U−1. They represent rigid
rotations and reflections which preserve lengths and angles:

• |Ux| = |x|
• (Ux) · (Uy) = x · y

For an orthogonal basis,

projUv =
∑

(v · ui)ui = UU>v

The eigenvalues of an orthogonal matrix have magnitude 1, so the determinant is ±1. The
product of two orthogonal matrices is also orthogonal.

Definition 19. Matrix A is symmetric if A> = A.

Theorem 29 (Spectral Theorem). A is orthogonally diagonalizable iff A is symmetric.

Proof. A> = (PDP>)> = PDP> = A.
If v1 and v2 correspond to distinct eigenvalues, then λ1v1 · v2 = (λ1v1)

>v2 = (Av1)
>v2 =

(v>1 A
>)v2 = v>1 Av2 = v>1 λ2v2 = λ2v1 · v2. Thus (λ1 − λ2)v1 · v2 = 0, so v1 · v2 = 0. �

Definition 20. The spectral decomposition of A is

A = λ1u1u
>
1 + · · ·+ λnunu

>
n
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6. Differential Equations

The first-order homogenous ODE y′+ay = 0 with the initial value y(0) has the solution

yh = y(0)e−at

The first-order inhomogenous ODE y′ + ay = f(t) has the solution y = yp + yh.
Method of undetermined coefficients. If f(t) = Ctmert, then

yp = (Amt
m + · · ·+ A0)e

rt

and the coefficients are found by plugging it into the ODE.
If r = −a, multiply by t: yp = t(Amt

m + · · ·+ A0)e
rt.

If there is a sine or cosine term, then Euler’s formula shows that
yp = (Amt

m + · · ·+ A0)e
αt cos βt+ (Bmt

m + · · ·+B0)e
αt sin βt.

Superposition principle. If y1 is a solution to y′ + ay = f1(t) and y2 is a solution to
y′ + ay = f2(t), then k1y1 + k2y2 is a solution to y′ + ay = k1f1(t) + k2f2(t). The yp for f(x)
containing sums is the sum of the yp for each term.

The homogenous linear system x′ = Ax has the solution space Spanλivi, which may be
written as a fundamental matrix X = [λivi].
The solution may also be written as the matrix exponential eAt = XX−1(0) where eA(0) = I.
The two-dimensional case may be visualized with a phase portrait, which is a vector field
with value (x′, y′) at each (x, y). The behavior along eigenvectors and axes is important.

The inhomogenous linear system x′ = Ax + b has a vector yp such as aert.

Or use variation of parameters: x = eA(t−t0)x(t0) +
∫ t
t0
eA(t−t0)f(s) ds.

The higher-order ODE y(n) + · · ·+ a1y
′ + a0y = f(t) may be written in normal form as a

first-order system using the substitution x0 = y, x1 = y′, . . ., xn−1 = y(n−1), so

x′ =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −an−2 −an−1

x +


0
0
...
0

f(x)


The Fourier series for f(x) on the interval [−L,L] is

f(x) =
a0
2

+
∞∑
n=1

an cos
nπ

L
x+ bn sin

nπ

L
x,where

an =
1

L

∫ L

−L
f(x) cos

nπ

L
x dx bn =

1

L

∫ L

−L
f(x) sin

nπ

L
x dx

A cosine or sine series may be written on the half-range [0, L] assuming that the function is
even or odd, respectively.

To solve a PDE such as the heat or wave equation, expand the solution u as a Fourier
series in the eigenbasis that satisfies the boundary conditions. Add a U1 + U2−U1

2
x term if the

boundary is inhomogenous. Then write out the main equation, expressing the inhomogenous
term in the eigenbasis. Collecting terms yields an ODE system. Finally, ensure that the
solution satisfies the initial conditions.
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