Linear algebra

Norms satisfy

- $||x|| \geq 0$ with equalify iff $x = 0$
- $\|ax\| = |a| \|x\|$
- Triangle: $||x + y|| \le ||x|| + ||y||$

Dual norm $\|x\|_* = \max\limits_{\|z\|\leq 1} z^T x$ Trace. $tr(ABC) = tr(CAB)$ Complex conjugate. For real $U, U^* = U^T$ **Orthonormal** columns: $U^T U = I$ **Orthogonal** (unitary) matrix: $U^T U = U U^T = I$ or $U^{-1} = U^T$ Columns and rows are orthonormal Diagonalizable matrix $A = PDP^{-1}$ **Symmetric** (normal) matrix: $A = A^T (AA^* = A^*A)$ **Spectral theorem.** $A = U\Lambda U^T$, U orthonormal Singular values are $|\Lambda|$ since $A^2 = U\Sigma^2 U^T$ SVD $A = U\Sigma V^T$ where $v_i = sign(\lambda_i)u_i$: $\sum u_i \lambda_i u_i^T = \sum u_i |\lambda_i| sign(\lambda_i)u_i^T$

Singular values are square roots of nonnegative eigenvalues of A^TA **SVD**: $X = U\Sigma V^T$. If X has $m > n$, U and V have orthogonal columns. U is $m \times n$; Σ and V are $n \times n$.

 $\textbf{Operator norm. } \|A\|_{op} = \max_{\|v\|=1} \|Av\|. ~~ \|Av\| \leq \|A\|_{op} \|v\|, ~ \|AB\| \leq \|A\| \|B\|$

Operator norm for ℓ_2 vector space is the max singular value

For any $x = \sum c_i v_i$, $\frac{|Ax|^2}{|x|^2}$ $\frac{Ax|^2}{|x|^2} = \frac{\sum c_i^2 \lambda_i^2}{\sum c_i^2} \le \max \lambda_i^2.$

Frobenius norm $\sqrt{\text{tr}(A^T A)}$ is norm based on element-wise dot product $Av = \lambda v \Rightarrow (A + cI)v = (\lambda + c)v$ $u^T A v = \sum$ $_{i,j}$ $u_i v_j A_{ij}$ and $ABC_{ij} = \sum$ m,n $A_{im}B_{mn}C_{nj}$

Topology

 $Compact = closed and bounded$ Continuous functions preserve compact sets *Neighborhood* of p of radius $r N_r(p) = \{q : |p - q| < r\}$

p is an *interior point* $\Leftrightarrow \exists \delta$ s.t. $N_{\delta}(p) \subset S$

p is a boundary point $\Leftrightarrow \forall r, N_r(p)$ contains $p_1 \in S$ and $p_2 \notin S$

p is a limit point of $S \Leftrightarrow$ every neighborhood of p contains $q \neq p$ s.t. $q \in S$ \Leftrightarrow p is the limit of a sequence of points in S

S open \Leftrightarrow every point in S is an interior point

S closed \Leftrightarrow S contains every limit point of $S \Leftrightarrow S$ contains its boundary \Leftrightarrow S^c is open

Union of open sets is open, intersection of finite open sets is open

 \emptyset and $\mathbb R$ are both open and closed; $(0, 1]$ is neither open or closed

A topology or topological space is defined by a set and a choice of open subsets satisfying the axioms. Every set is open in the discrete topology. No set except \emptyset and the space itself is open in the indiscrete topology.

Analysis

f is continuous at a iff $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$

Cauchy-Schwartz inequality. $||u \cdot v|| \le ||u|| ||v||$

Mean value theorem. $\exists z \in (x, y) \text{ s.t. } f(y) - f(x) = \nabla f(z)^T (y - x)$

Given the 1D version, $f'(z) = \frac{f(y)-f(x)}{y-x}$, we can define $g(t) = f((1-t)x + ty)$. Then $\exists c \text{ s.t. } g(1) - g(0) = g'(c)$.

Mean value form of Taylor's theorem.

$$
\exists z \in (x, y) \text{ s.t. } f(y) = f(x) + f'(x)(y - x) + \frac{1}{2}f''(z)(y - x)^2
$$

Hessian-vector product. $\nabla^2(x)\mathbf{v} = \lim_{h\to 0}$ $\nabla f(x + h\mathbf{v}) - \nabla f(x)$ h

Convexity

Note: all statements involving t hold for all $t \in (0,1)$

Set S is convex iff $tx + (1-t)y \in S \ \forall x, y \in S$

 0° f is convex iff its domain is convex and

$$
f(tx+(1-t)y) \le tf(x) + (1-t)f(y) \,\forall x, y
$$

 f is *strictly convex* iff the inequality is strict

f is *strongly convex* for param $m > 0$ iff $f - \frac{m}{2}$ $\frac{n}{2}||x||_2^2$ is convex Indicator function of a convex set S is convex: $f(x) = 0$ if $x \in S$ else ∞ Quadratic $\frac{1}{2}x^TQx + b^Tx + C$ is convex iff $Q \succeq 0$ f convex iff its epigraph $\{(x,t)|f(x) \leq t\}$ is convex If f is convex or quasiconvex, all its *sublevel sets* $\{x|f(x) \leq t\}$ are convex 1° Lower Linear Bound. f is convex iff its domain is convex and

$$
f(y) \ge f(x) + \nabla f(x)^{T} (y - x) \,\forall x, y
$$

Cor. x is a global minimum iff $\nabla f(x)^T (y - x) \geq 0 \ \forall y$. (Boyd 139) Cor. x is a global minimum if $\nabla f(x) = 0$ (or $\exists 0 \in \partial f(x^*)$) Convex \Rightarrow 1°. Pf. $\forall x, y$, we have

$$
tf(y) + (1-t)f(x) \ge f(ty + (1-t)x) = f(x+t(y-x))
$$

$$
f(y) \ge f(x) + \frac{f(x+t(y-x)) - f(x)}{t}
$$

$$
\ge f(x) + \nabla(x)^{T}(y-x) \text{ after } t \to 0
$$

 $1^{\circ} \Rightarrow$ convex. Pf. Let $z = tx + (1-t)y$.

$$
f(x) \ge f(z) + \nabla f(z)^{T}(x - z)
$$

$$
f(y) \ge f(z) + \nabla f(z)^{T}(y - z)
$$

$$
tf(x) + (1 - t)f(y) \ge f(z) + \nabla f(z)^{T}(tx + (1 - t) - z)
$$

$$
tf(x) + (1 - t)f(y) \ge f(z)
$$

 2° . f is convex iff its domain is convex and

$$
\nabla^2 f(x) \succeq 0 \,\forall x
$$

Allen Zhu

 $\nabla^2 f(x) \succ 0 \Rightarrow f$ is strictly convex but the converse is not true $(x^4 \text{ at } x = 0)$ Convex $\Rightarrow \nabla^2 \succeq 0$ (1D). Pf. For $x < y$, we have $f(y) \ge f(x) + f'(x)(y - x)$ and $f(x) \ge f(y) + f'(y)(x - y)$, so $f'(x)(y - x) \le f(y) - f(x) \le f'(y)(y - x)$. Dividing by $(y-x)^2$, $\frac{f'(y)-f'(x)}{y-x} \ge 0$. So as $y \to x$, $f''(x) \ge 0$.

 $\nabla^2 \succeq 0 \Rightarrow$ convex (1D). Pf. By the mean value form of Taylor's theorem, $\exists z \in [x, y] \text{ s.t. } f(y) = f(x) + f'(x)(y - x) + \frac{1}{2}f''(z)(y - x)^2 \text{, so } f(y) \geq$ $f(x) + f'(x)(y - x).$

Generalization to \mathbb{R}^n . *Pf.* f is convex $\Leftrightarrow f$ is convex along all lines $\Leftrightarrow g(r) =$ $f(x+rv)$ is convex for all $x, v \Leftrightarrow g''(r) = v^T \nabla^2 f(x+rv)v \geq 0 \Leftrightarrow \nabla^2 f(x) \succeq 0.$

Monotonicity condition. f is convex iff its domain is convex and

$$
(\nabla f(x) - \nabla f(y))^T (x - y) \ge 0
$$

Convex \Rightarrow monotonic. Pf. Apply the first-order characterization to (x, y) and (y, x) and combine the inequalities:

$$
f(y) \ge f(x) + \nabla f(x)^{T} (y - x)
$$

$$
f(x) \ge f(y) + \nabla f(y)^{T} (x - y)
$$

$$
\nabla f(x)^{T} (x - y) \ge \nabla f(y)^{T} (x - y)
$$

Monotonic \Rightarrow convex. Pf. TODO

Partial optimization: $\min_{x_i} f$ is convex for any subset of variables x_i

Smoothness

f is L -smooth iff:

- 0° Upper quadratic bound. $f(y) \leq f(x) + \nabla f(x)^T (y x) + \frac{L}{2} ||y x||_2^2$
- 1° $\langle \nabla f(x) \nabla f(y), x y \rangle \leq L \|x y\|_2^2$
- 2° $\nabla^2 f(x) \preceq L I$

Gradient descent

GD Lemma. Function value decreases each iteration. Can still take forever since $\nabla f \to 0$ as $x \to x^*$.

Plug GD def into smoothness and assume $\eta \leq \frac{1}{l}$ $\frac{1}{L}$:

$$
f(x_{t+1}) \le f(x_t) + \nabla f(x_t)^T (x_{t+1} - x_t) + \frac{L}{2} ||x_{t+1} - x_t||_2^2
$$

$$
f(x_{t+1}) \le f(x_t) + \nabla f(x_t)^T (-\eta \nabla f(x_t)) + \frac{L}{2} || -\eta \nabla f(x_t)||_2^2
$$

$$
f(x_{t+1}) \le f(x_t) - \eta ||\nabla f(x_t)||_2^2 + \frac{L\eta^2}{2} ||\nabla f(x_t)||_2^2
$$

$$
f(x_{t+1}) \le f(x_t) - \frac{\eta}{2} ||\nabla f(x_t)||_2^2
$$

MD Lemma. Use convex property and the identity $\langle x_t - x_{t+1}, y - x_t \rangle = -\frac{1}{2}$ $\frac{1}{2} (||y - x_t||^2 - ||y - x_{t+1}||^2 + ||x_{t+1} - x_t||^2)$

$$
f(y) \ge f(x_t) + \langle \nabla f(x_t), y - x_t \rangle
$$

\n
$$
\ge f(x_t) + \frac{1}{\eta} \langle x_t - x_{t+1}, y - x_t \rangle
$$

\n
$$
\ge f(x_t) - \frac{1}{2\eta} (||y - x_t||^2 - ||y - x_{t+1}||^2 + ||x_{t+1} - x_t||^2)
$$

\n
$$
f(x_t) \le f(y) + \frac{1}{2\eta} (||y - x_t||^2 - ||y - x_{t+1}||^2 + ||x_{t+1} - x_t||^2)
$$

\n
$$
\sum f(x_t) \le Tf(x^*) + \frac{1}{2\eta} (||y - x_t||^2 - ||y - x_{t+1}||^2 + ||x_{t+1} - x_t||^2)
$$

\n
$$
\frac{1}{T} \sum f(x_t) \le f(x^*) + \frac{1}{2\eta T} ||x^* - x_0||^2 + \frac{\eta}{2T} \sum ||\nabla f(x_t)||^2
$$

Conditioning

Condition number $\kappa = \frac{\lambda_{\max}}{\lambda}$ $\frac{\lambda_{\max}}{\lambda_{\min}}.$ $f(x) = f(x^*) + \sum f(x^*) (x - x^*) + \frac{1}{2} (x - x^*)^T \nabla^2 f(z) (x - x^*),$ so $\nabla f(x) = H(x - x^*)$ for $H = \nabla^2 f(\overline{z})$. Let H have eigenvalues λ_i .

$$
x_{t+1} = x_t - \eta \nabla f(x_t)
$$

$$
x_{t+1} = x_t - \eta H(x - x^*)
$$

$$
(x_{t+1} - x^*) = (I - \eta H)(x_t - x^*)
$$

$$
\|\tilde{x}_{t+1}\|_2 \le \|I - \eta H\|_2 \|\tilde{x}_t\|_2
$$

 $1 - \eta H$ has eigenvalues $1 - \eta \lambda_i$. For $\eta = \frac{c}{\lambda}$ $\frac{c}{\lambda_{\max}}$, 0 < c < 2, max $|1 - \eta \lambda_i| = 1 - c \frac{\lambda_{\min}}{\lambda_{\max}}$ $\frac{\lambda_{\min}}{\lambda_{\max}} = 1 - \frac{c}{\kappa} < 1.$ For $\eta = \frac{2}{\lambda + \frac{1}{2}}$ $\frac{2}{\lambda_{\min}+\lambda_{\max}}, \max|1-\eta\lambda_i|=1-\frac{2\lambda_{\min}}{\lambda_{\min}+\lambda_{\min}}$ $\frac{2\lambda_{\min}}{\lambda_{\min}+\lambda_{\max}}=\frac{\kappa-1}{\kappa+1}.$ Integrating, $\|\tilde{x}_{t+1}\| \leq \left(\frac{\kappa-1}{\kappa+1}\right)^t \|\tilde{x}_0\|.$