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Linear algebra

Norms satisfy

• ‖x‖ ≥ 0 with equalify iff x = 0

• ‖ax‖ = |a| ‖x‖

• Triangle: ‖x+ y‖ ≤ ‖x‖+ ‖y‖

Dual norm ‖x‖∗ = max
‖z‖≤1

zTx

Trace. tr(ABC) = tr(CAB)

Complex conjugate. For real U , U∗ = UT

Orthonormal columns: UTU = I

Orthogonal (unitary) matrix: UTU = UUT = I or U−1 = UT

Columns and rows are orthonormal

Diagonalizable matrix A = PDP−1

Symmetric (normal) matrix: A = AT (AA∗ = A∗A)
Spectral theorem. A = UΛUT , U orthonormal
Singular values are |Λ| since A2 = UΣ2UT

SVD A = UΣV T where vi = sign(λi)ui:
∑
uiλiu

T
i =

∑
ui|λi|sign(λi)u

T
i

Singular values are square roots of nonnegative eigenvalues of ATA

SVD: X = UΣV T . If X has m > n, U and V have orthogonal columns. U
is m× n; Σ and V are n× n.

Operator norm. ‖A‖op = max
‖v‖=1
‖Av‖. ‖Av‖ ≤ ‖A‖op‖v‖, ‖AB‖ ≤ ‖A‖‖B‖

Operator norm for `2 vector space is the max singular value

For any x =
∑
civi,

|Ax|2
|x|2 =

∑
c2i λ

2
i∑

c2i
≤ maxλ2i .

Frobenius norm
√

tr(ATA) is norm based on element-wise dot product

Av = λv ⇒ (A+ cI)v = (λ+ c)v

uTAv =
∑
i,j

uivjAij and ABCij =
∑
m,n

AimBmnCnj

Topology

Compact = closed and bounded

Continuous functions preserve compact sets
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Neighborhood of p of radius r Nr(p) = {q : |p− q| < r}
p is an interior point ⇔ ∃δ s.t. Nδ(p) ⊂ S

p is a boundary point ⇔ ∀r, Nr(p) contains p1 ∈ S and p2 6∈ S
p is a limit point of S ⇔ every neighborhood of p contains q 6= p s.t. q ∈ S
⇔ p is the limit of a sequence of points in S

S open ⇔ every point in S is an interior point

S closed ⇔ S contains every limit point of S ⇔ S contains its boundary
⇔ Sc is open

Union of open sets is open, intersection of finite open sets is open

∅ and R are both open and closed; (0, 1] is neither open or closed

A topology or topological space is defined by a set and a choice of open
subsets satisfying the axioms. Every set is open in the discrete topology. No
set except ∅ and the space itself is open in the indiscrete topology.

Analysis

f is continuous at a iff ∀ε > 0, ∃δ > 0 s.t. |x− a| < δ ⇒ |f(x)− f(a)| < ε

Cauchy-Schwartz inequality. ‖u · v‖ ≤ ‖u‖‖v‖
Mean value theorem. ∃z ∈ (x, y) s.t. f(y)− f(x) = ∇f(z)T (y − x)

Given the 1D version, f ′(z) = f(y)−f(x)
y−x , we can define g(t) = f((1− t)x+ ty).

Then ∃c s.t. g(1)− g(0) = g′(c).

Mean value form of Taylor’s theorem.

∃z ∈ (x, y) s.t. f(y) = f(x) + f ′(x)(y − x) +
1

2
f ′′(z)(y − x)2

Hessian-vector product. ∇2(x)v = lim
h→0

∇f(x+ hv)−∇f(x)

h
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Convexity

Note: all statements involving t hold for all t ∈ (0, 1)

Set S is convex iff tx+ (1− t)y ∈ S ∀x, y ∈ S
0◦ f is convex iff its domain is convex and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) ∀x, y

f is strictly convex iff the inequality is strict

f is strongly convex for param m > 0 iff f − m
2
‖x‖22 is convex

Indicator function of a convex set S is convex: f(x) = 0 if x ∈ S else ∞
Quadratic 1

2
xTQx+ bTx+ C is convex iff Q � 0

f convex iff its epigraph {(x, t)|f(x) ≤ t} is convex

If f is convex or quasiconvex, all its sublevel sets {x|f(x) ≤ t} are convex

1◦ Lower Linear Bound. f is convex iff its domain is convex and

f(y) ≥ f(x) +∇f(x)T (y − x) ∀x, y

Cor. x is a global minimum iff ∇f(x)T (y − x) ≥ 0 ∀y. (Boyd 139)

Cor. x is a global minimum if ∇f(x) = 0 (or ∃0 ∈ ∂f(x∗))

Convex ⇒ 1◦. Pf. ∀x, y, we have

tf(y) + (1− t)f(x) ≥ f(ty + (1− t)x) = f(x+ t(y − x))

f(y) ≥ f(x) +
f(x+ t(y − x))− f(x)

t
≥ f(x) +∇(x)T (y − x) after t→ 0

1◦ ⇒ convex. Pf. Let z = tx+ (1− t)y.

f(x) ≥ f(z) +∇f(z)T (x− z)

f(y) ≥ f(z) +∇f(z)T (y − z)

tf(x) + (1− t)f(y) ≥ f(z) +∇f(z)T (tx+ (1− t)− z)

tf(x) + (1− t)f(y) ≥ f(z)

2◦. f is convex iff its domain is convex and

∇2f(x) � 0 ∀x
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∇2f(x) � 0⇒ f is strictly convex but the converse is not true (x4 at x = 0)

Convex ⇒ ∇2 � 0 (1D). Pf. For x < y, we have f(y) ≥ f(x) + f ′(x)(y − x)
and f(x) ≥ f(y) +f ′(y)(x−y), so f ′(x)(y−x) ≤ f(y)−f(x) ≤ f ′(y)(y−x).

Dividing by (y − x)2, f ′(y)−f ′(x)
y−x ≥ 0. So as y → x, f ′′(x) ≥ 0.

∇2 � 0 ⇒ convex (1D). Pf. By the mean value form of Taylor’s theorem,
∃z ∈ [x, y] s.t. f(y) = f(x) + f ′(x)(y − x) + 1

2
f ′′(z)(y − x)2, so f(y) ≥

f(x) + f ′(x)(y − x).

Generalization to Rn. Pf. f is convex⇔ f is convex along all lines⇔ g(r) =
f(x+rv) is convex for all x, v ⇔ g′′(r) = vT∇2f(x+rv)v ≥ 0⇔ ∇2f(x) � 0.

Monotonicity condition. f is convex iff its domain is convex and

(∇f(x)−∇f(y))T (x− y) ≥ 0

Convex ⇒ monotonic. Pf. Apply the first-order characterization to (x, y)
and (y, x) and combine the inequalities:

f(y) ≥ f(x) +∇f(x)T (y − x)

f(x) ≥ f(y) +∇f(y)T (x− y)

∇f(x)T (x− y) ≥ ∇f(y)T (x− y)

Monotonic ⇒ convex. Pf. TODO

Partial optimization: min
xi

f is convex for any subset of variables xi

Smoothness

f is L-smooth iff:

• 0◦ Upper quadratic bound. f(y) ≤ f(x) +∇f(x)T (y− x) + L
2
‖y− x‖22

• 1◦ 〈∇f(x)−∇f(y), x− y〉 ≤ L‖x− y‖22

• 2◦ ∇2f(x) � LI
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Gradient descent

GD Lemma. Function value decreases each iteration. Can still take forever
since ∇f → 0 as x→ x∗.

Plug GD def into smoothness and assume η ≤ 1
L

:

f(xt+1) ≤ f(xt) +∇f(xt)
T (xt+1 − xt) +

L

2
‖xt+1 − xt‖22

f(xt+1) ≤ f(xt) +∇f(xt)
T (−η∇f(xt)) +

L

2
‖ − η∇f(xt)‖22

f(xt+1) ≤ f(xt)− η‖∇f(xt)‖2 +
Lη2

2
‖∇f(xt)‖22

f(xt+1) ≤ f(xt)−
η

2
‖∇f(xt)‖22

MD Lemma. Use convex property and the identity
〈xt − xt+1, y − xt〉 = −1

2
(‖y − xt‖2 − ‖y − xt+1‖2 + ‖xt+1 − xt‖2)

f(y) ≥ f(xt) + 〈∇f(xt), y − xt〉

≥ f(xt) +
1

η
〈xt − xt+1, y − xt〉

≥ f(xt)−
1

2η

(
‖y − xt‖2 − ‖y − xt+1‖2 + ‖xt+1 − xt‖2

)
f(xt) ≤ f(y) +

1

2η

(
‖y − xt‖2 − ‖y − xt+1‖2 + ‖xt+1 − xt‖2

)
∑
f(xt) ≤ Tf(x∗) +

1

2η

(
‖y − xt‖2 − ‖y − xt+1‖2 + ‖xt+1 − xt‖2

)
1

T

∑
f(xt) ≤ f(x∗) +

1

2ηT
‖x∗ − x0‖2 +

η

2T

∑
‖∇f(xt)‖2
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Conditioning

Condition number κ = λmax

λmin
.

f(x) = f(x∗) +����∇f(x∗)(x− x∗) + 1
2
(x− x∗)T∇2f(z)(x− x∗), so

∇f(x) = H(x− x∗) for H = ∇2f(z). Let H have eigenvalues λi.

xt+1 = xt − η∇f(xt)

xt+1 = xt − ηH(x− x∗)
(xt+1 − x∗) = (I − ηH)(xt − x∗)
‖x̃t+1‖2 ≤ ‖I − ηH‖2‖x̃t‖2

1− ηH has eigenvalues 1− ηλi.
For η = c

λmax
, 0 < c < 2, max |1− ηλi| = 1− c λmin

λmax
= 1− c

κ
< 1.

For η = 2
λmin+λmax

,max |1− ηλi| = 1− 2λmin

λmin+λmax
= κ−1

κ+1
.

Integrating, ‖x̃t+1‖ ≤
(
κ−1
κ+1

)t ‖x̃0‖.


