Linear algebra

Norms satisfy

- $||x|| \ge 0$ with equalify iff x = 0
- ||ax|| = |a| ||x||
- Triangle: $||x + y|| \le ||x|| + ||y||$

Dual norm $||x||_* = \max_{\|z\| < 1} z^T x$

Trace. tr(ABC) = tr(CAB)

Complex conjugate. For real $U, U^* = U^T$

Orthonormal columns: $U^TU = I$

Orthogonal (unitary) matrix: $U^TU = UU^T = I$ or $U^{-1} = U^T$

Columns and rows are orthonormal

Diagonalizable matrix $A = PDP^{-1}$

Symmetric (normal) matrix: $A = A^T$ ($AA^* = A^*A$)

Spectral theorem. $A = U\Lambda U^T$, U orthonormal

Singular values are $|\Lambda|$ since $A^2 = U\Sigma^2 U^T$

SVD
$$A = U\Sigma V^T$$
 where $v_i = \text{sign}(\lambda_i)u_i$: $\sum u_i\lambda_i u_i^T = \sum u_i|\lambda_i|\text{sign}(\lambda_i)u_i^T$

Singular values are square roots of nonnegative eigenvalues of A^TA

SVD: $X = U\Sigma V^T$. If X has m > n, U and V have orthogonal columns. U is $m \times n$; Σ and V are $n \times n$.

Operator norm. $||A||_{op} = \max_{||v||=1} ||Av||$. $||Av|| \le ||A||_{op} ||v||$, $||AB|| \le ||A|| ||B||$

Operator norm for
$$\ell_2$$
 vector space is the max singular value
For any $x = \sum c_i v_i$, $\frac{|Ax|^2}{|x|^2} = \frac{\sum c_i^2 \lambda_i^2}{\sum c_i^2} \leq \max \lambda_i^2$.

Frobenius norm $\sqrt{\operatorname{tr}(A^TA)}$ is norm based on element-wise dot product

$$Av = \lambda v \Rightarrow (A + cI)v = (\lambda + c)v$$

$$u^T A v = \sum_{i,j} u_i v_j A_{ij}$$
 and $ABC_{ij} = \sum_{m,n} A_{im} B_{mn} C_{nj}$

Topology

Compact = closed and bounded

Continuous functions preserve compact sets

Neighborhood of p of radius r $N_r(p) = \{q : |p - q| < r\}$

p is an interior point $\Leftrightarrow \exists \delta \text{ s.t. } N_{\delta}(p) \subset S$

p is a boundary point $\Leftrightarrow \forall r, N_r(p)$ contains $p_1 \in S$ and $p_2 \notin S$

p is a limit point of $S \Leftrightarrow \text{every neighborhood of } p$ contains $q \neq p$ s.t. $q \in S \Leftrightarrow p$ is the limit of a sequence of points in S

S open \Leftrightarrow every point in S is an interior point

S closed $\Leftrightarrow S$ contains every limit point of $S \Leftrightarrow S$ contains its boundary $\Leftrightarrow S^c$ is open

Union of open sets is open, intersection of finite open sets is open

 \emptyset and \mathbb{R} are both open and closed; (0,1] is neither open or closed

A topology or topological space is defined by a set and a choice of open subsets satisfying the axioms. Every set is open in the discrete topology. No set except \emptyset and the space itself is open in the indiscrete topology.

Analysis

f is continuous at a iff $\forall \varepsilon > 0$, $\exists \delta > 0$ s.t. $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$

Cauchy-Schwartz inequality. $||u \cdot v|| \le ||u|| ||v||$

Mean value theorem. $\exists z \in (x, y) \text{ s.t. } f(y) - f(x) = \nabla f(z)^T (y - x)$

Given the 1D version, $f'(z) = \frac{f(y) - f(x)}{y - x}$, we can define g(t) = f((1 - t)x + ty). Then $\exists c \text{ s.t. } g(1) - g(0) = g'(c)$.

Mean value form of Taylor's theorem.

$$\exists z \in (x,y) \text{ s.t. } f(y) = f(x) + f'(x)(y-x) + \frac{1}{2}f''(z)(y-x)^2$$

Hessian-vector product.
$$\nabla^2(x)\mathbf{v} = \lim_{h\to 0} \frac{\nabla f(x+h\mathbf{v}) - \nabla f(x)}{h}$$

Convexity

Note: all statements involving t hold for all $t \in (0,1)$

Set S is convex iff $tx + (1 - t)y \in S \ \forall x, y \in S$

 0° f is **convex** iff its domain is convex and

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) \ \forall x, y$$

f is strictly convex iff the inequality is strict

f is strongly convex for param m > 0 iff $f - \frac{m}{2} ||x||_2^2$ is convex

Indicator function of a convex set S is convex: f(x) = 0 if $x \in S$ else ∞

Quadratic $\frac{1}{2}x^TQx + b^Tx + C$ is convex iff $Q \succeq 0$

f convex iff its epigraph $\{(x,t)|f(x) \leq t\}$ is convex

If f is convex or quasiconvex, all its sublevel sets $\{x|f(x) \leq t\}$ are convex

 1° Lower Linear Bound. f is convex iff its domain is convex and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) \ \forall x, y$$

Cor. x is a global minimum iff $\nabla f(x)^T(y-x) \geq 0 \ \forall y$. (Boyd 139)

Cor. x is a global minimum if $\nabla f(x) = 0$ (or $\exists 0 \in \partial f(x^*)$)

Convex $\Rightarrow 1^{\circ}$. Pf. $\forall x, y$, we have

$$tf(y) + (1-t)f(x) \ge f(ty + (1-t)x) = f(x+t(y-x))$$

 $f(y) \ge f(x) + \frac{f(x+t(y-x)) - f(x)}{t}$
 $\ge f(x) + \nabla(x)^T (y-x) \text{ after } t \to 0$

 $1^{\circ} \Rightarrow \text{convex. } Pf. \text{ Let } z = tx + (1-t)y.$

$$f(x) \ge f(z) + \nabla f(z)^{T}(x - z)$$

$$f(y) \ge f(z) + \nabla f(z)^{T}(y - z)$$

$$tf(x) + (1 - t)f(y) \ge f(z) + \nabla f(z)^{T}(tx + (1 - t) - z)$$

$$tf(x) + (1 - t)f(y) \ge f(z)$$

 2° . f is convex iff its domain is convex and

$$\nabla^2 f(x) \succeq 0 \ \forall x$$

 $\nabla^2 f(x) \succ 0 \Rightarrow f$ is strictly convex but the converse is not true $(x^4 \text{ at } x = 0)$ Convex $\Rightarrow \nabla^2 \succeq 0$ (1D). Pf. For x < y, we have $f(y) \geq f(x) + f'(x)(y - x)$

and $f(x) \ge f(y) + f'(y)(x - y)$, so $f'(x)(y - x) \le f(y) - f(x) \le f'(y)(y - x)$. Dividing by $(y - x)^2$, $\frac{f'(y) - f'(x)}{y - x} \ge 0$. So as $y \to x$, $f''(x) \ge 0$.

 $\nabla^2 \succeq 0 \Rightarrow \text{convex (1D)}$. Pf. By the mean value form of Taylor's theorem, $\exists z \in [x,y] \text{ s.t. } f(y) = f(x) + f'(x)(y-x) + \frac{1}{2}f''(z)(y-x)^2$, so $f(y) \geq f(x) + f'(x)(y-x)$.

Generalization to \mathbb{R}^n . Pf. f is convex $\Leftrightarrow f$ is convex along all lines $\Leftrightarrow g(r) = f(x+rv)$ is convex for all $x, v \Leftrightarrow g''(r) = v^T \nabla^2 f(x+rv)v \geq 0 \Leftrightarrow \nabla^2 f(x) \succeq 0$.

Monotonicity condition. f is convex iff its domain is convex and

$$(\nabla f(x) - \nabla f(y))^T (x - y) \ge 0$$

Convex \Rightarrow monotonic. Pf. Apply the first-order characterization to (x, y) and (y, x) and combine the inequalities:

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$
$$f(x) \ge f(y) + \nabla f(y)^T (x - y)$$
$$\nabla f(x)^T (x - y) \ge \nabla f(y)^T (x - y)$$

Monotonic \Rightarrow convex. Pf. TODO

Partial optimization: $\min_{x_i} f$ is convex for any subset of variables x_i

Smoothness

f is L-smooth iff:

- 0° Upper quadratic bound. $f(y) \leq f(x) + \nabla f(x)^T (y-x) + \frac{L}{2} ||y-x||_2^2$
- $1^{\circ} \langle \nabla f(x) \nabla f(y), x y \rangle \leq L ||x y||_2^2$
- $2^{\circ} \nabla^2 f(x) \leq LI$

Gradient descent

GD Lemma. Function value decreases each iteration. Can still take forever since $\nabla f \to 0$ as $x \to x^*$.

Plug GD def into smoothness and assume $\eta \leq \frac{1}{L}$:

$$f(x_{t+1}) \leq f(x_t) + \nabla f(x_t)^T (x_{t+1} - x_t) + \frac{L}{2} ||x_{t+1} - x_t||_2^2$$

$$f(x_{t+1}) \leq f(x_t) + \nabla f(x_t)^T (-\eta \nabla f(x_t)) + \frac{L}{2} ||-\eta \nabla f(x_t)||_2^2$$

$$f(x_{t+1}) \leq f(x_t) - \eta ||\nabla f(x_t)||^2 + \frac{L\eta^2}{2} ||\nabla f(x_t)||_2^2$$

$$f(x_{t+1}) \leq f(x_t) - \frac{\eta}{2} ||\nabla f(x_t)||_2^2$$

MD Lemma. Use convex property and the identity

$$\langle x_{t} - x_{t+1}, y - x_{t} \rangle = -\frac{1}{2} \left(\|y - x_{t}\|^{2} - \|y - x_{t+1}\|^{2} + \|x_{t+1} - x_{t}\|^{2} \right)$$

$$f(y) \geq f(x_{t}) + \langle \nabla f(x_{t}), y - x_{t} \rangle$$

$$\geq f(x_{t}) + \frac{1}{\eta} \langle x_{t} - x_{t+1}, y - x_{t} \rangle$$

$$\geq f(x_{t}) - \frac{1}{2\eta} \left(\|y - x_{t}\|^{2} - \|y - x_{t+1}\|^{2} + \|x_{t+1} - x_{t}\|^{2} \right)$$

$$f(x_{t}) \leq f(y) + \frac{1}{2\eta} \left(\|y - x_{t}\|^{2} - \|y - x_{t+1}\|^{2} + \|x_{t+1} - x_{t}\|^{2} \right)$$

$$\sum f(x_{t}) \leq Tf(x^{*}) + \frac{1}{2\eta} \left(\|y - x_{t}\|^{2} - \|y - x_{t+1}\|^{2} + \|x_{t+1} - x_{t}\|^{2} \right)$$

$$\frac{1}{T} \sum f(x_{t}) \leq f(x^{*}) + \frac{1}{2\eta T} \|x^{*} - x_{0}\|^{2} + \frac{\eta}{2T} \sum \|\nabla f(x_{t})\|^{2}$$

Conditioning

Condition number $\kappa = \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}$.

$$f(x) = f(x^*) + \nabla f(x^*)(x - x^*) + \frac{1}{2}(x - x^*)^T \nabla^2 f(z)(x - x^*)$$
, so $\nabla f(x) = H(x - x^*)$ for $H = \nabla^2 f(z)$. Let H have eigenvalues λ_i .

$$x_{t+1} = x_t - \eta \nabla f(x_t)$$

$$x_{t+1} = x_t - \eta H(x - x^*)$$

$$(x_{t+1} - x^*) = (I - \eta H)(x_t - x^*)$$

$$\|\tilde{x}_{t+1}\|_2 \le \|I - \eta H\|_2 \|\tilde{x}_t\|_2$$

 $1 - \eta H$ has eigenvalues $1 - \eta \lambda_i$.

For
$$\eta = \frac{c}{\lambda_{\max}}$$
, $0 < c < 2$, $\max |1 - \eta \lambda_i| = 1 - c \frac{\lambda_{\min}}{\lambda_{\max}} = 1 - \frac{c}{\kappa} < 1$.
For $\eta = \frac{2}{\lambda_{\min} + \lambda_{\max}}$, $\max |1 - \eta \lambda_i| = 1 - \frac{2\lambda_{\min}}{\lambda_{\min} + \lambda_{\max}} = \frac{\kappa - 1}{\kappa + 1}$.

For
$$\eta = \frac{2}{\lambda_{\min} + \lambda_{\max}}$$
, $\max |1 - \eta \lambda_i| = 1 - \frac{2\lambda_{\min}}{\lambda_{\min} + \lambda_{\max}} = \frac{\kappa - 1}{\kappa + 1}$

Integrating, $\|\tilde{x}_{t+1}\| \leq \left(\frac{\kappa-1}{\kappa+1}\right)^t \|\tilde{x}_0\|$.