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Linear algebra

Norms satisfy

e ||z|| > 0 with equalify iff z =0
o |laz| = laf ||z

o Triangle: [lz +yl| < [lz[| + [y

Dual norm ||z, = max 2’z
ll2lI<1
Trace. tr(ABC) = tr(CAB)
Complex conjugate. For real U, U* = UT
Orthonormal columns: UTU = [
Orthogonal (unitary) matrix: UTU = UUT =T or Ut = UT
Columns and rows are orthonormal
Diagonalizable matrix A = PDP~!
Symmetric (normal) matrix: A = AT (AA* = A*A)
Spectral theorem. A = UAU”, U orthonormal
Singular values are |A| since A% = UX2UT
SVD A = UXVT where v; = sign(\;)u;: > widul =3 ug| \i|sign( Ay )u?
Singular values are square roots of nonnegative eigenvalues of A7 A

SVD: X = UXVT. If X has m > n, U and V have orthogonal columns. U
ismxn; X and V are n X n.
Operator norm. |[Afl,, = max||Av]l. [[Av]| < [[Allop[[v], [ABIl < Al B]
Operator norm for /¢, vector space is the max singular value

|[Az]2 Y c2x?

For any = = ¢;v;, T = = < max \?.
1

Frobenius norm 4/tr(ATA) is norm based on element-wise dot product
Av=X v = (A+cl)v=(A+c)v
UTAU = Z UinAij and ABCZ] = Z AimanOnj

ij m,n

Topology
Compact = closed and bounded

Continuous functions preserve compact sets
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Neighborhood of p of radius r N,.(p) ={q: |p—¢q| <7}
p is an interior point < 39 s.t. Ns(p) C S
p is a boundary point < ¥r, N,(p) contains p; € S and ps & S

p is a limit point of S < every neighborhood of p contains ¢ # p s.t. ¢ € S
< p is the limit of a sequence of points in §

S open < every point in S is an interior point

S closed < S contains every limit point of S < S contains its boundary
< 5S¢ is open

Union of open sets is open, intersection of finite open sets is open
) and R are both open and closed; (0, 1] is neither open or closed

A topology or topological space is defined by a set and a choice of open
subsets satisfying the axioms. Every set is open in the discrete topology. No
set except () and the space itself is open in the indiscrete topology.

Analysis

f is continuous at a iff Ve >0, 36 > 0s.t. |[x —a| <6 = |f(x) — f(a)] <¢
Cauchy-Schwartz inequality. ||u - v|| < |Ju||||v]

Mean value theorem. 3z € (z,y) s.t. f(y) — f(z) =V [f(2)T(y — x)
Given the 1D version, f'(z) = %, we can define g(t) = f((1—t)z+1ty).
Then Je s.t. g(1) — g(0) = ¢'(c).

Mean value form of Taylor’s theorem.

32 € (2,9) st () = F() + F@)y — ) + 5 () — o)

h _
Hessian-vector product. Vz(x)v = flljr% Vi + ‘];) Vf(x)
—
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Convexity
Note: all statements involving ¢ hold for all ¢ € (0, 1)
Set S is conver iff tv + (1 —t)y € SVz,y € S

0° f is convex iff its domain is convex and
flte+ (1 =t)y) <if(z)+ (1 —1)f(y) Yo,y

f is strictly convex iff the inequality is strict

f is strongly convex for param m > 0 iff f — Z{|z[|3 is convex

Indicator function of a convex set S is convex: f(x) =0if x € S else co
Quadratic 27 Qx + b"x 4 C'is convex iff Q = 0

f convex iff its epigraph {(x,t)|f(x) <t} is convex

If f is convex or quasiconvex, all its sublevel sets {x|f(x) <t} are convex

1° Lower Linear Bound. f is convex iff its domain is convex and

fly) = fx) + V(@) (y — ) Yo,y
Cor. x is a global minimum iff V f(z)"(y — z) > 0 Vy. (Boyd 139)
Cor. x is a global minimum if V f(z) =0 (or 30 € 9f(z*))
Convex = 1°. Pf. Vx,y, we have

tfly) + (1 =t)f(x) = fty + (1 = t)z) = f(z + t(y — x))

) > flo)+ LB - v) - f(x)
> f(z)+ V()" (y — z) after t — 0

1° = convex. Pf. Let z =tx + (1 —t)y.

flx) > f(2)+ Vf(z) (@ —2)

fW) = f(2)+ V) (y—2)
tf(z)+ (1 =) f(y) = f(2) + VI(2) (te + (1 —t) — 2)
tf(z) + (1 =t)f(y) > f(2)

2°. f is convex iff its domain is convex and

V2f(z) = 0 Va
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V2f(z) = 0 = f is strictly convex but the converse is not true (z? at x = 0)
Convex = V? = 0 (1D). Pf. For x <y, we have f(y) > f(z) + f'(z)(y — z)

and f(z) > f(y) + f'(y)(x—y), so f(x)(y—z) < fy) — f(x) < f(y)(y—2).

Dividing by (y — )2, %ﬁ/(m) >0. Soasy —z, f'(x) > 0.

V? = 0 = convex (1D). Pf. By the mean value form of Taylor’s theorem,
3z € [z,y] st fly) = f(2) + f(2)(y — o) + 5f"(2)(y — )%, s0 fly) =
flx) + f'(@)(y — ).

Generalization to R". Pf. f is convex < f is convex along all lines < ¢(r)
f(x+rv) is convex for all z,v & ¢"(r) = vIV2f(z+rv)v > 0 & Vif(z) =

Monotonicity condition. f is convex iff its domain is convex and

(Vf(@) = Vi) (@—-y) =0

0.

Convex = monotonic. Pf. Apply the first-order characterization to (x,y)
and (y,x) and combine the inequalities:

fy) > f(@)+ V(@) (y—x)
@)= f)+ Vi) (= —y)
Vi) (x—y) >V (z—y)

Monotonic = convex. Pf. TODO

Partial optimization: min f is convex for any subset of variables x;

Smoothness
f is L-smooth iff:
e 0° Upper quadratic bound. f(y) < f(z)+ Vf(2)"(y — z) + L]y — z||3

o 1°(Vf(x) = Vf(y),z —y) < Ll|lx — y| 2
e 2°V2f(x) X LI
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Gradient descent

GD Lemma. Function value decreases each iteration. Can still take forever
since Vf — 0 as v — z*.

Plug GD def into smoothness and assume n < 1:

L
Jle) < flae) + V(@) (w1 — 2) + §||It+1 — x4|f3

Flrenn) < F) + Y F@)T (09 7 (w) + 51| = 09 (o)
(i) < Fw) ~ VTP + 219 )

f@er) < flae) = 2V fla)l

MD Lemma. Use convex property and the identity
(0 = zpp,y — @) = =5 (ly — 2ll? = ly — 21 |* + v — %)

f) > f(x) +(V (@), y — m1)

> f(z) + %(% — Tyy1,Y — Ty)
zﬂ@»~iUM—QW—Wy—QHW+w@H—mW)
fze) < fly) + 2— (ly = zell? = ly = e I + l|wer — @)
5 @) < TF) + 5 (ly =l = g = ol + o = ai]P)

1 1
7o) < f@) + gl =l + g IVl
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Conditioning

Condition number xk = ))\‘m—“

min

fz) = f(@*) + V(@ — *) + 3(x — 2*) V2 f(2) (2 — %), so
Vf(z) = H(x —z*) for H=V2f(z). Let H have eigenvalues \;.

T = 2 — NV [ (24)
Ty = xy —nH(z — x¥)
(@141 —2") = (I = nH)(x; — 27)
el < T = il

1 — nH has eigenvalues 1 — n)\;.
Forn:KZX,0<c<2,max|1—n)\i]:1—c;\\:ﬁ:1—§<1.

For n = 5 2

2 PN |
min+)\max

Integrating, [|Z]| < (552)" [1o]l.



