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Learning theory proves statistical bounds on the sample complexity of function
classes. The fundamental theorem says that VC dimension characterizes sample
complexity, and that ERM algorithms are optimal for PAC learning.

VC dimension completely characterizes the growth of the shattering number. Sauer’s
lemma says that when |X | is below the VC dimension, H shatters all points and the
growth function is exponential; whereas above the VC dimension, the shattering
number grows slowly (polynomially).

The shattering number measures the effective size of H on some X . If H can la-
bel X in many different ways, then the search problem is difficult, and the sample
complexity will be high. In the extreme case, H shatters all points and any labeling
is possible, which means that it is impossible to learn from a training subset how
h∗ will behave on the rest of the points. The no free lunch theorem formalizes this
notion, and we can show that if |X | = ∞ and V C(H) = ∞, no learning is possible
at all. On the other hand, if the shattering number is small, then we only need to
observe a few points to have a good idea of how h∗ will behave on all of X .

Textbooks: Understanding Machine Learning, Elements of Statistical Learning

Risk is expected loss, e.g. R(h) = Px∼D(h(x) 6= y) for the 0-1 loss

Generalization gap ∆ = supf |R̂−R|

For finite F , ∆ ≤
√

ln |F|+ln 2/δ
2n

Pf. Hoeffding’s (bdd 1) + UB: P (∆ ≥ t) ≤ 2|F| exp(−2nt2) = δ

VC theorem. ∆ ≤ O

(√
|V C(F) logn|+ln 1/δ

n

)
For realizable H, H is PAC learnable iff ∀ε, δ > 0, ∃n s.t. PX∼D(R(ĥ) ≥ ε) ≤ δ

Thm. Finite, realizable H is PAC learnable for n ≥ 1
ε

log |H|
δ

with ĥ from ERM.

https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
https://web.stanford.edu/~hastie/ElemStatLearn//printings/ESLII_print12_toc.pdf
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Pf. Let Hε = {h|R(h) > ε}.

P (R(ĥ) ≤ ε) = P

( ⋃
h∈Hε

{X|R̂X(h) = 0}

)
≤
∑
h∈Hε

P (R̂X(h) = 0)

≤
∑
h∈Hε

(1− ε)n

≤ |H|(1− ε)n

≤ |H|e−nε

E.g. For a finite domain X and the full class of 2|X | hypotheses H : X → {−1, 1},
P (R(ĥ) ≥ 1

8
) ≤ 1

7
with at least 8 log(7|H|) ≈ 5|X | samples.

VC dimension

The restriction of H onto X HX = { (h(X1), . . . , h(Xm)) |h ∈ H} is the set of label
vectors that can be generated by hypotheses in H
The shattering number |HX | is the number of possible labelings of X
|HX | ≤ 2|X|

H shatters X if |HX | = 2|X| i.e. H can generate any possible labeling of X

VC dimension of H is the maximum size of a set that can be shattered by H

� VC of hyperplane is ≤ d + 1 by Radon’s thm: for any d + 2 points, ∃ a partition
into two sets s.t. convex hulls overlap.

� VC of NN is N logN , for N edges. Concatenation F1×F2 i.e. Cartesian product
at most ΠF1(m)ΠF2(m). Composition same since |∪y=f1(x)f2(y)| ≤

∑
x |f2(f1(x))|.

Network is composition of concatenations of hyperplanes, each Π ≤ mdi−1. Thus
total Π ≤ mN . Shattered 2m ≤ mN .

Growth function τH(m) = max
|X|=m

|HX |

Sauer’s lemma (UML page 74).

|HX | ≤
V C(H)∑
i=0

(
|X|
i

)
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V C(H) = O(mV C(H)) since for m > V C(H), |HX | ≤ ( em
V C(H)

)V C(H).

Pf.

|HX | ≤ |{B|B ⊆ X,H shatters B}| ≤
V C(H)∑
n=0

(
|X|
n

)
The second inequality adds up the number of ways to choose of set of size n ≤ V C(H),
since any larger set cannot be shattered by H.

For the first inequality, we induct on m = |X|. (Base case: if H is empty, the
inequality holds. For nonempty H and m = 1, either |HX | = 1 and H only shatters
the empty set, or |HX | = 2 and H shatters the empty set and X.)

Induction: let X ′ = {X2, . . . , Xm}. We list the unique elements of HX :

h1(X1), h1(X2), . . . , h1(Xm)

h2(X1), h2(X2), . . . , h2(Xm)

...

hk(X1), hk(X2), . . . , hk(Xm)︸ ︷︷ ︸
Ignoring the first column, the table includes all elements of HX′ . In addition, some
elements appear twice if HX generates both (0, y2, . . . , ym) and (1, y2, . . . , ym). Let
H′ be the set of hypotheses corresponding to these rows, so |HX | = |HX′ | + |H′X′ |.
By the induction hypothesis,

|HX′| ≤ |{B|B ⊆ X ′,H shatters B}|
|H′X′| ≤ |{B|B ⊆ X ′,H′ shatters B}|

= |{B ∪ {X1}|B ⊆ X ′,H′ shatters B ∪ {X1}}|
≤ |{B ∪ {X1}|B ⊆ X ′,H shatters B ∪ {X1}}|

Finally, since subsets of X either exclude or include X1,

|HX | = |HX′ |+ |H′X′| ≤ |{B|B ⊆ X,H shatters B}|

Alternative proof via shifting. We can change any 1 entry in the table above to a
0 unless it would produce a row that is already in the table. We repeat this until
no more entries can be shifted, producing a new table H̃X . All possible shifts exist
in H̃X , so if a row contains columns with 1s, then those columns are shattered by
H̃. Thus |HX | = |H̃X | ≤ {B|B ⊆ X, H̃ shatters B}. Finally, V C(H̃) ≤ V C(H)
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because if some columns were shattered after a shift then they were shattered before
the shift.

No free lunch theorem (UML page 61). If the hypothesis space H is uncon-
strained, then for any learning algorithm given at most 1

2
|X | training samples, the

output ĥ has significant risk:

P
(
R(ĥ) ≥ 1

8

)
≥ 1

7

Cor. Any H with infinite VC dimension is not PAC learnable.

Pf. Let |X | = 2n. Choose h∗ : X → {−1, 1} uniformly at random from the 22n

possibilities, and choose the test distribution D uniformly at random over X . The
learning algorithm has at least a 1

2
chance of being tested on an unseen point Ui, and

in that case it can’t do better than chance:

RD(ĥ) ≥ 1
2
RU(ĥ) = 1

2
· 1
2

= 1
4

Finally, note that R(ĥ) ≤ 1, so 1−R(ĥ) is nonnegative, so by Markov’s

P
(
R(ĥ) ≤ 1

8

)
= P

(
1−R(ĥ) ≥ 7

8

)
≤ E[1−R(ĥ)]

7/8
≤ 3/4

7/8
= 6

7
⇒ P

(
R(ĥ) ≥ 1

8

)
≥ 1

7

FTSLT. H is PAC learnable iff H has finite VC dimension, with sample complexity

1
ε
(d+ log 1

δ
) . n∗ . 1

ε
(d log 1

ε
+ log 1

δ
)

where the bound on the right is achieved via ERM.

E.g. Threshold H = {I(x > a)|a ∈ R} is PAC learnable.

Pf. Let a be the threshold for h∗, and define a−, a+ s.t. P (x ∈ (a−, a)) = ε.

P (ĥ ≥ ε) = P ({x|minxi < a−} ∪ {x|maxxi > a+})
≤ P ({x|minxi < a−}) + P ({maxxi > a+}) ≤ 2(1− ε)n ≤ 2e−nε = δ

Neural Network Expressiveness

Universal approx. For Lipschitz f on [0, 1]d, 3-layer NN with O((L
ε
)d) neurons has∫

|f − f̂ | dx ≤ ε
NN approx. Exists 2-layer NN with O(C

ε
) sigmoid neurons s.t. supx |G0(x) −

gw(x)| ≤ ε

Depth. ∃ ReLU NN [0, 1] → [0, 1] of O(L2) depth s.t. any NN of depth L and 2L

nodes has
∫
|f − g| dx ≥ 1

32


