
Deep Learning
Supervised Learning
Optimization

GD + momentum: best 1st order conv. in theory
Adagrad: invariant to κ, vanishing η
Preconditioned GD/adaptive algorithms: can
use a larger η < 1/a for curvature A � ∇2f � aA
Adam = Adagrad + momentum, can fail to conv.

Lottery ticket hypothesis. Small subnetwork
that wins initialization lottery can have same per-
formance.

Mode connectivity. Local minima are connected
by simple paths of near-same cost.

Generalization Can’t explain double descent.
Modern view: flat minima

Unsupervised Learning
Distri. learning, poor classification. Let
KL(Q,P ) ≤ ε. For classification,
TV (Qθ(· | x)||Pθ(· | x)) = supΩ |Prh∼Q[Ω]− Prh∼P [Ω]|.
From Pinsker’s inequality,

TV (Q||P ) ≤
√

1
2
KL(Q||P ) ≤

√
1
2
ε.

K-Means (Structure Learning)

Distance metrics include Euclidean, Manhattan,
Minkowski. Criteria: intra-cluster cohesion, inter-
cluster separation. Cons: sensitive to outliers, bad
for non-spherical clusters.

Representation Learning

Want: interpretive, have downstream use, hierarchy,
semantic clusterability, linear interpolation, disen-
tangled

Disentangled representations formalized as pθ(z) =∏
i pθ(zi) for the prior and

∫
x
qθ(z|x)p(x)dx is ap-

proximately a prod. dist. for the posterior. Weak
evidence seems to correlate with performance on
downstream tasks. Suffers from parametrization
variance. Measures (are all correlated). Ex: Be-
taVAE metric assuming ground truth variation fac-
tors:

1. generate v1, v2 where k factor is the same, gen-
erate x1, x2

2. infer latents z1, z2 using model

3. calculate (zavg, k) and train linear predictor,
evaluate.

Sparse Coding

Learn dictionary D of features s.t. sample x ≈
Dh where ‖h‖0 is small. Learning objective
is minD

1
T

∑T
t=1 minh(t)

1
2
‖x(t) −Dh(t)‖2

2 + λ‖h(t)‖1

(prefer not L0 for convexity) with ISTA (LASSO)
algorithm and warm starts.

Autoencoders

Learn features s.t. input is reconstructable from
them (encoder, decoder). Add constraints such that
identity is not learned (like sparsity).

Variant. Pros Cons

weight tying
undercomplete rep. cannot memorize bad with alt. inputs
overcomplete rep. could memorize
denoising autoenc. robust to noise
variational learn dist.

Bayesian Networks (Distribution Learning)

BNs are DAGs where directed links correspond to
conditional dependence. The probability distribu-
tion can be factorized (each node conditioned on its
parents). Easy to sample from.

Sigmoid Belief Network

Bipartite latent-variable model (directed RBM), sig-
moid activations.

Latent Dirichlet Allocation

Given α ∈ RK , β ∈ RN×K
+ for K topics and N vo-

cabulary words:

1. Sample θ ∼ Dir(α) (get proportion of topics).

2. For each word x, sample topic z ∼ Cat(θ), then
sample x ∼ Cat(βz).

Variational Autoencoders

BNs with Gaussian layers (assume diagonal covari-
ance for tr. eff.).

Is an encoder as ELBO likelihood can be rewrit-
ten as Eqθ [log pθ(x,h)

qθ(h|x)
] = obj − βR where obj =

Eqθ log pθ(x|h) and R = KL(qθ||pθ(h)) for each layer.
↑ β =↑ disentanglement.

Learning: Reparam ∇θEθ to reduce variance



Markov Random Fields (Distribution Learning)

undirected, p(x) = 1
Z

∏
(i,j)∈E(G) φij(xi, xj) factors

into potential functions over maximal cliques.

Jaynes principle. Distr. p = arg maxpH(p)
s.t. mean of each clique is µC is p(x) ∝
exp (

∑
C wCφC(xC)).

Restricted Boltzmann Machines

A RBM is a MRF latent-variable model where graph
is bipartite. Assume E(v, h) = −a′h− b′v − h′Wv
then P (v, h) = 1

Z
e−E(v,h). p(x) hard, but easy to

sample posterior:
P (hj = 1|v) = 1

1+exp−W,jv−a , P (vj = 1|h) = 1
1+exp−Wi,h−b

GANS (Distribution Learning)

Train a metric for semantic image similarity instead
of `2 loss.

W-GAN. ming∈G max
f∈F
|EPg [f ]− EPsamples [f ]|︸ ︷︷ ︸
dF (Psamples,Pg)

Also φ(f) variants for monotone φ e.g. log for DC-
GAN

dF is TV distance for F = {f : |f∞| ≤ 1}, and
Wasserstein distance for F = {f : Lip(f) ≤ q}, JS
divergence for F unconstrained. F has distinguish-
ing power against G if ∀g, h ∈ G : dF (Pg, Ph) &
W1(Pg, Ph).

Statistical Considerations (discriminator choice)

Weak discr. Generator with support size m fools
NN discr. with ≤ m parameters. Weak f leads
to mode collapse (cannot distinguish between small-
support distribution and real distribution).

Large discr. Large discr. leads to poor generaliza-
tion (overfitting).

Discr. for 1-to-1 G. ∃ small F with distinguishing
power against G (1-to-1 NN) s.t. w poly(d) samples,
dF ≤ ε→ W1 ≤ O(

√
ε).

Algorithmic Considerations (discriminator choice)

Take multiple steps for f for every g. Clip weights
for Lipschitzness.

Problems: unstable training (saddle point problem),
vanishing gradient (if the discriminator is too good,
generator gradients are small), mode collapse (un-
clear if stat or alg problem).

Evaluation

No p(x). Diagnose small support w/ birthday para-
dox. Not memorizing if interpolation in latent gives

meaningful images without sharp transitions. Incep-
tion score: inception network p(y|x) should be sure
of labels and generate a good mix of labels

Invertible Models (Distribution Learning)

Marry likelihood based approach with GANs
by assuming g−1 = f is invertible and Pg(x) =
φ(f(x))| det(Jx(f(x)))|. Max likelihood is
maxθ

∑N
i logPg(x).

Transform. Pros Cons

linear det easy poor rep.
elementwise J diag poor rep.
NICE J lower triag. (det prod of diag)

Variational Methods

Inference: Partition Function

For self-reducible problems, we can compute
marginals by computing partition functions.

Gibbs variat. principle For p = 1
Z
ψ(x), logZ =

maxq[Eq logψ(x) + H(q)] (Gibbs free energy) since
0 ≤ KL(q‖p) = Eq log q − Eq log p.

Mean-field approx. assume q =
∏

i qi.

Inference: Posterior

Using p(z|x) = p(z)p(x|z)
p(x)

and formulae for KL,

arg minq(z|x)KL(q(z|x)||p(z|x)) = arg min{−H(q)− Eq log p(z, x)}.
Can use coordinate ascent if using the mean-field
approx.

KL order. Minimizing KL(q||p) will have q = 0
where p = 0 whereas KL(p||q) will have q 6= 0 where
p 6= 0.

ELBO Using Bayes rule and Gibbs if given p(z, x)
then log p(x) = maxq(z|x) H(q|z) + Eq log p(x, z).

Learning: Params for BNs

maxθ∈Θ

∑
log p(xi) = maxθ∈Θ maxq(z|x)

∑
H(q) +

Eq[log pθ(xi, z)]⇒ EM

MCMC

Markov chain monte-carlo methods for sampling (in-
ference).

Markov if P (Xt|X<t) = P (Xt|Xt−1). Homoge-
nous if P (Xt|Xt−1 does not depend on t. A station-
ary distribution satisfies πT = π. Unique if graph
is irreducible (connected) and aperiodic (acyclic).

Detailed balance. A sufficient condition for π is
πiTij = πjTji.



Metropolis-Hasting (Inference: Sampling)

Want to sample from stationary distribution up to
a (unknown) constant of proportionality π(x = i) =
b(i)
Z

.

For α(i, j) = min
(
πjq(j,i)

πiq(i,j)
, 1
)

= min
(
b(j)q(j,i)
b(i)q(i,j)

, 1
)

then π is the stationary distribution of the walk
(proven by detailed balance).

Algorithm

P (Xn = j|Xn−1 = i) =

1. i to j with probability q(i, j)

2. w.p. 1 − α(i, j) go back to state i, otherwise
stay in j

Gibbs Sampling (Inference: Sampling)

When P (xi|x−i) is easy, just do coordinate-wise up-
dates (= MHs with appropriate kernel).
Mixing time. High if there’s poor conductance

φ(S) =
∑
i∈S,j 6∈S Tij∑
i∈S πi

.

Langevin Dynamics (Inference: Sampling)

Want to sample from p(x) = 1
Z

exp(−f(x)) over dif-
ferentiable continuous domain. Algorithm is gra-
dient descent with Gaussian noise xt+1 = xt −
η∇f(xt) +

√
2ηξk. Works well for unimodal func-

tions, hardness comes from multimodality (hard to
climb hills).

Tempering

Potential solution for multimodality. Algorithm in-
volves pk(x) ∝ e−f(x)/c for different k, and swapping
occasionally. Algorithm is (1) stay on chain w.p.

1/2, (2) switch to chain k′ w.p. min(
pk′ )(x)

pk)(x)
, 1) where

x is current point. Stat. distri. is P (x, k) = 1
K
pk(x).

Langevin Tempering Runtime. For p(x) ∝
e−f(x) be K shifts of d dimension log-concave dis-
trib., then runtime is poly(K, d) until stat. distrib
(works as take the road less hilly, for same shape
modes).

Learning: Energy Models

Solve maxθ∈Θ

∑n
i=1 log pθ(xi) where pθ(x) ∝

exp(−Eθ(x)).
∇θ logZθ = 1

Zθ

∫
x

exp(−Eθ(x))∇θ(−Eθ(x))dx =

Epθ [−∇θEθ(x)]. Hence, gradient of objective is

∇θf ≈ Epdata [−∇θEθ(x)]− Epθ [−∇θEθ(x)],

where we use Langevin to sample from pθ.

Or minimize Epdata‖∇x log pdata(x) − (−Eθ(x))‖2

(which is friendly to gradients) w/ Gaussian conv.
for smoothing out bad estimates and tempering for
multimodality.

Learning: RBMs

Can factorize p(x) = exp(F (x)/Z such that gradi-
ent is 1

n
(
∑

i−∇θFθ(xi)) − Epθ [−∇θFθ(x)]. Sample
x ∼ pθ in second part using Gibbs. Algorithm CD-
k is GD + Gibbs with k steps. In general, greater k
gives less biased gradients, in practice k = 1 works
well. Persistent CD is warm-starting the Gibbs
chain.

Learning: DBNs

DBNs are stacked SBNs (directed, conditional re-
stricted probabilities P (h(1) = 1|h(2)) = σ(b(1) +

W (2)>h(2))) with an RBM at the top. Joint distri-
bution factorizes.

The variational intuition involves ELBO and not-
ing that the joint distribution can untied and then
viewed as maximizing expectation of log probabili-
ties.

Algorithm is layer-wise training. Train bottom
up assuming undirected (Gibbs sampling) freeze
weights after convg. and move up. Sample using
Gibbs on top layer but conditional probs on others.

Self-Supervised Learning

No labels, but train on auxiliary supervised tasks
so model learns good representation for downstream
tasks

Autoregressive Models (Sequential Learning)

Factor joint distribution of data as p(x1, x2, . . . , xt) =
p(xi | x<i).

Model. p(xi | x<i)

FV Sigmoid BN p(xi | x<i) = σ
(∑i

j=1Aixj + ci

)
NADE

extra layer
hi = σ(W·,ix<i + c) s.t.
p(xi|x<i) = σ(αTi hi + bi)

MADE
use autoencoder to spec-
ify p(x̂|x), then mask for
p(xi|x<i) (fixed seq length)

PixelCNN
Conv. version of MADE, lay-
ers after first are not masked.



RNNs

Sequential model for arbitrary length sequences.
Specified as hi = tanh(Whhhi−1 +Wxhxi, oi = Whyhi
and p(xi|x<i) ∼ softmax(oi).

Solve exploding/vanishing gradient problem (lack of
theory) using LSTMs : train gate on the input, gate
on hidden layer update, and when to forget the pre-
vious state.

NLP

Big models. Large models to better and improve-
ments have not asymptoted.

Multi-step Q&A not solved – involves semantic un-
derstanding instead of just pattern matching.

Word embeddings

Want semantically meaningful vector reps. Objec-
tive is maxθ

∑
t log pθ(xt|xt−1, . . . , xt−L) (generative

model, can use cross-entropy).

Related tasks: pred. middle x (table be-
low), predict subset of words. No genera-
tive model, need to evaluate using indirect
means: intrinsic similar words (cosine), analo-
gies or extrinsic train for downstream tasks.

Model. pθ

CBOW pθ(xt|xt−1, . . . , xt−L) ∝ exp(vxt ,
∑
wxi)

Skip-Gram pθ(xi|xt) ∝ exp(vxt , wxt)

ELMo
train LSTM on pθ(xt|x<t), and
pθ(xt|x>t) then concat.

Distri. hypothesis. Words are defined by its con-
text, cosine sim. correlates with human similarity.
Can try to find low-dimension approx of similarities.

SkipGram/CBOW reduce dim. Obj. can be
rewritten as maximization of inner products for
words that co-occur: 〈vi, wj〈≈ PMI.

Generative Model

Let P (w) ∝ exp(vw ·ct) where ct is a discourse vector
that does a random walk (s.t. ‖ct− ct−1‖ � 1√

d
and

‖vw‖ = Θ(
√
d)).

Co-occurence capture PMI. Let P (w,w′) be the

co-occurrence, then log p(w,w′) = 1
2d
‖vw + vw′‖2 −

2 logZ ± ε (norm of vec. is freq; spatial orient is
meaning).

Transformers

Can use for machine translation (RNN-based en-
coder/decoders).

1. involves attention A(Q,K, V ) = softmax(QKTV )
(query q, key k and value v + similarity).

2. positional encoding (add sinusoid)

3. non linearities

Learn word embeddings. Obv. method: GPT2 use
decoder on words to learn classes. BERT uses en-
coder to predict random % of words given rest.

Vision

Task Comments

Inpainting

L2 loss (blurry), GANs loss typi-
cally
Region: fixed (not gen.), random
(square borders problem), rand.
silhouette (ill-defined)

Jigsaw
shortcuts (boundary, lines, chro-
matic abb.)

Rotation no obv. cheats

CD
“distortion” should still have sim.
features.

Arch. matters. Different self-supervising tasks
need different architectures.

Adversarial Robustness
Perturbations imperceptible to humans cause NN to
fail.
Attacks: Literature focuses on white box attacks:
adversary produces perturbation δ with ε max norm
(fast gradient sign method (take largest ε step), PGD
(arg maxδ L(x+ δ; θ) s.t. ‖δ‖ ≤ ε).

Defenses

Failed defenses: non-differentiability, add random-
ness, very deep networks (gradient obfuscation).
Adversarial Training: Min max training on defender
and adversary (empirical). Not yet broken but slow.
Provable Defenses : decision boundary is not con-
tained within an ε-norm ball:

• Convex Polytope: track a ball around the in-
put to the output

• Interval Bound Propagation: axis-aligned
polytope is faster

• Randomized smoothing: add noise, inte-
grate (via sampling), scalable, smooth decision
boundary, reduces accuracy but might improve
generalization



Adding robustness typically decreases standard ac-
curacy.
Train w/o Non-Robust Features Networks might use
non-robust features which correlate with label on

average but can flip within ε-ball. Removing non-
robust features leads to adversarially robust gener-
alization, with accuracy tradeoff.


