Interpretable reinforcement learning

About me

About me

Overview

- Motivation
- Problem statement
- Approaches
- Final method
- Results

Motivation

Robots would be great

Robots don't understand the world

Supervised data is expensive

Built-in workflow pricing for labeling with Amazon Mechanical Turk

If you use a vendor, the cost per label is set by the vendor. You can see each vendor's pricing details in AWS Marketplace. If you use Amazon Mechanical Turk for labeling, you are charged per object per labeler. We recommend that you use multiple labelers per object to improve label accuracy.

Workflow	Suggested price per labeler					
Image classification	\$0.012					
Text classification	\$0.012					
Named Entity Recognition (NER)	\$0.024					
Bounding box	\$0.036					
Semantic Segmentation	\$0.84					

Robots should explore by themselves

How can the robot learn human concepts?

How can the robot learn human concepts?

Problem statement

Interpretable reinforcement learning

Procgen

Object-based reinforcement learning

Human gameplay on game version without any object priors

Human gameplay on original game version

Goal: add an object detector

Image \rightarrow Object detector \rightarrow Objects \rightarrow RL

Approaches

1. Use a pretrained vision model (Detectron)

1. Use a pretrained vision model (Detectron)

Original

Optical flow

Object detector

1. Use a pretrained vision model (Detectron)

No objects detected

a) Represent image as an array of object vectors

b) Represent image as a list of (object category, object mask)

- Unreliable
- Encoder misses small objects
- Ignores task context

Approaches (part 2)

Maybe we can add indirect biases

3. Model agent-object interactions

3. Model agent-object interactions

4. Add a channel bottleneck

- Prior: only a few object types
- Prior: true dimensionality is much lower

Nature CNN

Bottleneck CNN

Experiment

- Train with 40 object textures
- Test on 6 new textures
- Same dynamics: agent needs to collect good objects and avoid bad objects

Final method

Idea: categorize objects

Sanity check

• Ground truth categories improve agent performance

Architecture

$$(64,64,3) \rightarrow 3x3 \rightarrow ST \xrightarrow{(64,64,64)} 8x8/4 \xrightarrow{(15,15,32)} 4x4/2 \xrightarrow{(7,7,64)} 3x3 \rightarrow (5,5,64)$$

conv33 dsc nature CNN

Discretization

Vector quantization

Discretization

$$q_i = \frac{exp(z_i/T)}{\sum_j exp(z_j/T)}$$

Softmax annealing

Discretization

Pass-through gradients

• U-Net paper

• Resnet performs just as well

Latents

Latents

No significant impact on performance

Ablation

• What if we use a reconstruction loss?

Ablation

• What if we use a reconstruction loss?

Correcting mistakes

Teaching new objects

Transferring textures

Transfer

n_steps	PAD		BC	RIA						
	131k	1M	8k	131k	0	16	32	64	256	1024
leaper	-127	-127	74	164	-51	19	54	66	76	88
fruitbot	9	9	16	90	9	55	66	77	70	83
miner	-17	-15	42	37	45	50	49	50	79	90
dodgeball	-8	-8	5	22	-7	29	35	32	50	40
starpilot	-6	6	4	70	6	21	28	33	43	55

Table 1: Average normalized scores in test environments with different backgrounds and object textures.

Transferring games

Conclusion

Code: github.com/allenz/interpretable-rl